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Connectome-based reservoir computing
with the conn2res toolbox

Laura E. Suárez1,2, Agoston Mihalik 3, Filip Milisav 1, Kenji Marshall4,
Mingze Li1,2, Petra E. Vértes 3, Guillaume Lajoie 2,5 & Bratislav Misic 1

The connection patterns of neural circuits form a complex network. How
signaling in these circuits manifests as complex cognition and adaptive
behaviour remains the central question in neuroscience. Concomitant
advances in connectomics and artificial intelligence open fundamentally new
opportunities to understand how connection patterns shape computational
capacity in biological brain networks. Reservoir computing is a versatile
paradigm that uses high-dimensional, nonlinear dynamical systems toperform
computations and approximate cognitive functions. Here we present con-
n2res: an open-source Python toolbox for implementing biological neural
networks as artificial neural networks.conn2res ismodular, allowing arbitrary
network architecture and dynamics to be imposed. The toolbox allows
researchers to input connectomes reconstructed using multiple techniques,
from tract tracing to noninvasive diffusion imaging, and to impose multiple
dynamical systems, from spiking neurons to memristive dynamics. The ver-
satility of the conn2res toolbox allows us to ask new questions at the con-
fluence of neuroscience and artificial intelligence. By reconceptualizing
function as computation, conn2res sets the stage for a more mechanistic
understanding of structure-function relationships in brain networks.

Brains are complex networks of anatomically connected and func-
tionally interacting neurons that have the ability to seamlessly assim-
ilate and interact with a perpetually changing external environment1.
Sensory stimuli elicit signaling events within structural connectivity
networks and manifest as patterned neural activity. These emergent
neural dynamics are thought to support the computations that
underlie cognition and adaptive behavior. However, a computational
framework that describes how information processing and functional
specialization occur in brain networks remains elusive. Developing
such a framework would require understanding the multiple levels of
the information-processing hierarchy, from how the brain’s network
architecture shapes the complex activity patterns elicited by external
stimuli, to how neural circuits extract from these evoked activity pat-
terns the necessary information to compute with time-varying inputs.

How does network structure shape spatiotemporal patterns of
neural activity, and how do neural dynamics support computations
that underlie cognitive functions and behaviors? An important piece of
the puzzle is the study of connectomics2. Technological and analytic
advances in neuroimaging methods have made it possible to recon-
struct the wiring patterns of nervous systems, yielding high-resolution
connectomes of brains in multiple species3–6. The availability of con-
nectomes has led to the formulation of a variety of models that aim to
map network architecture to various functional aspects of the brain7,
such as emergent neural dynamics8,9, functional co-activation
patterns10, and inter-individual differences in behavior11–13. Multiple
network features are correlated with emergent functional
phenomena14–19, but there is no clear mechanistic link between the
static network architecture and cognition.
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Furthermore, descriptive studies of the connectome across dif-
ferent species provide evidence that structural connectivity networks
display topological features that are thought to shape the segregation
and integration of information20. For instance, the simultaneous pre-
sence of a highly clustered architecture of segregated modules pro-
motes specialized information processing21–27, while a densely
interconnected core of high-degree hubs shortens communication
pathways and promotes the integration of information from dis-
tributed specialized domains28,29. How these ubiquitous organizational
principles of the architecture of the brain confer computational
capacity remains unknown.

Artificial intelligence offers alternative ways to approach the link
between structure and function in brain networks that take into
account computation30,31. Within the expanding spectrum of artificial
neural network models, reservoir computing makes it possible to
describe how recurrent neural circuits extract information from a
continuous stream of external stimuli and how they approximate
complex time-varying functions32,33. In reservoir networks learning
occurs exclusively at the readout connections, and hence the main
network architecture of the reservoir does not require specific weight
calibration, remaining fixed throughout training. This eliminates a
confounder while avoiding biologically implausible credit assignment
problems such as the use of backpropagation training34. These reasons
make reservoir computing an ideal paradigm to study the effects of
connectome architecture on computation and learning. In this regard,
machine-learning and artificial intelligence algorithms offer new ways
to study structure-function relationships in brain networks by con-
ceptualizing function as a computational property31,35.

Herewe review the fundamentals of reservoir computing andhow
it can be applied to gain mechanistic insight about the information
processing of biological neural circuits. We then present conn2res
(https://github.com/netneurolab/conn2res), an open-source Python
toolbox that implements connectomes as reservoirs to perform cog-
nitive tasks. In the spirit of open-science, conn2res builds on top of
and is interoperable with other third-party resources and research
initiatives to offer an exhaustive set of experimental configurations/
settings that researchers can experiment with. These include a com-
prehensive corpus of cognitive tasks spanning a wide spectrum of
computational and behavioral paradigms, multiple local intrinsic
dynamics, and various linear optimization algorithms for task learning.
All of this combinedwith the possibility of implementing connectomes
reconstructed at different scales and obtained from any imaging
modality. We have added a tutorial section with several use-case
examples to illustrate different types of inferences that the conn2res
toolbox supports, as well as to showcase its flexibility in terms of
network architecture, network dynamics, and task paradigm. While
being inclusive of different modeling traditions, frommicrocircuits to
whole-brain network models, conn2res contributes a novel way for
researchers to explore the link between structure and function in
biological brain networks.

Building a reservoir computer
Reservoir computing (RC) is an umbrella term that unifies two com-
putational paradigms, liquid state machines32 and echo-state
networks36. The two originated independently in the fields of compu-
tational neuroscience and machine-learning, respectively, with a
common goal: exploiting the computational properties of complex,
nonlinear dynamical systems37. However, the ideas encompassed by
theRCparadigmhadbeen around in different forms formore than two
decades prior38–40. The conventional reservoir computing (RC) archi-
tecture consists of an input layer, followed by the reservoir and a
readout module (Fig. 1a)32,36,37. Typically, the reservoir is a recurrent
neural network (RNN) of nonlinear units, while the readoutmodule is a
simple linear model. The readout module is trained to read the acti-
vation states of the reservoir — elicited by an external input signal —

and map them to the desired target output in a supervised manner. In
contrast to traditional artificial RNNs, the recurrent connectionswithin
the reservoir are fixed and randomly assigned; only the connections
between the reservoir and the readout module are learned (Fig. 1a)41.

So, how does RC work? RC capitalizes on the nonlinear response
of high-dimensional dynamical systems, referred to as reservoirs. The
reservoir performs a nonlinear projection of the input into a high-
dimensional space. This transformation of the input converts non-
linearly separable signals into linearly separable ones such that a linear
model in the readout module can be trained to map the transformed
input to the desired output41. In other words, the reservoir converts
inputs into rich dynamic patterns that contain integrated information
about the history of inputs and are read out linearly to solve complex
tasks. As long as the reservoir has sufficient built-in dynamical com-
plexity and rich dynamics, a large variety of input-output mappings
can be realized, including the approximation of complex time-varying
functions, such as forecasting chaotic time series, considered to be a
problem of high computational complexity. Under certain conditions,
such as the presence of fading memory and separation properties,
reservoirs can act as universal function approximators32,42–44.

The computational capabilities of the reservoir are thus deter-
mined by its dynamics, which arise from the interaction between the
fixed network architecture of the reservoir and the equations or rules
governing the time evolution of its internal units. Importantly, unlike
traditional artificial neural networks (Fig. 2a), in RC the experimenter
can specify the connectivity of the reservoir and the equations gov-
erning its local dynamics (Fig. 2b). Likewise, by tuning the parameters
of the system, the experimenter can transition global network
dynamics through qualitatively different dynamical regimes such as
stability or chaos45. The RC paradigm thus offers the advantages that
arbitrarynetwork architectures anddynamics canbe superimposedon
the reservoir, providing a tool for neuroscientists to investigate how
connectome organization and neural dynamics interact to support
learning in biologically-informed reservoirs (Fig. 2c).

The architectural flexibility of RC is multi-scale: the network
architecture of reservoirs can be informed by connectomes recon-
structed at different spatial scales, from microcircuits to meso- and
macro-scale networks (Fig. 1a). Depending on the context, the units of
the reservoir represent either populations of neurons or entire brain
regions. The choice of local dynamics is mainly determined by the
spatial scale of the reservoir’s network, but the nature of the research
question at hand should also be considered (Fig. 1a). In contrast to
traditional RNNs, in which global network dynamics are determined by
connectivity changes due to learning, RC allows us to impose not only
different types of local dynamics, but global dynamics governing the
population-level behavior can also be controlled. This means that the
dynamical regime — or qualitative dynamical behavior — of the reser-
voir can be tuned to progressively transition from stable to chaotic,
thus passing through a critical phase transition, or criticality46,47. By
parametrically tuning the dynamics to be closer or further from criti-
cality, RC allows us to investigate the effects of qualitatively different
neural trajectories near this critical point on the computational per-
formance of the reservoir47–49. An additional advantage of the dyna-
mical and structural flexibility of RC is the possibility to enforce
computational priors in the form of either functional or structural
inductive biases50. Therefore, RC allows us to explore the functional
consequences of information-processing strategies, such as critical
dynamics or the presence of computational priors, thought to be
exploited by biological brains45–47,51,52.

The fact that RC can be used with arbitrary network architectures
and dynamics, plus the possibility of performing a variety of tasks
spanning multiple cognitive domains — from perceptual-motor func-
tions, memory and learning, to complex attention and executive
functions — makes it ideal to investigate how specific network attri-
butes and dynamics influence the neural computations that support
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cognition53. Specifically, by implementing various tasks along these
multiple cognitive domains, connectome-informed reservoirs allow us
to systematically map network structure and dynamics to a unique set
of identifiable computational properties exclusive to the task at hand
(Fig. 1b). In this way, the RC framework allows us to build a compre-
hensive structural-functional ontology, relating network structure and
dynamics to fundamental blocks of computation and, ultimately, to
cognitive function.

The application of this hybrid approach between artificial intelli-
gence and neuroscience goes beyond exploring the link between
structure and function in the healthy brain. For instance, it can be
applied in the clinical setting to study how neurological diseases affect
learning in the network. By comparing the performance of reservoirs
informed by clinical populations against those informed by healthy
controls, this framework allows us to investigate whether cognitive
decline, measured as variations in computational capacity, can be
explained by measurable changes in network architecture due to
neurodegeneration (Fig. 1c). Another relevant application of the RC

framework is the exploration of how the link between structure and
function changes throughout adaptive processes suchasdevelopment
or evolution (Fig. 1c). For example, by implementing connectomes
obtained throughout the lifespan or from different species, as reser-
voirs, this framework allows us to investigate how variations in net-
work architecture translate into differences in computational capacity
across ontogeny and phylogeny, respectively. In all cases, the RC fra-
mework allows for statistical significance testing by benchmarking
empirical neural networkarchitectures against randomornull network
models54. Altogether, this hybrid frameworkproposes a shift in theway
structure-function relationships are studied in brain networks: from
understanding function as a phenomenon (i.e., inter-regional func-
tional interactions or functional activation maps), to a concept of
function that is closer to the computational and information-
processing properties of brain networks, thus contributing to a more
mechanistic understanding of how computations and functional spe-
cialization emerge from the interaction between network architecture
and dynamics in neural circuits.
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Fig. 1 | Reservoir computing. aThe conventional reservoir computing architecture
consists of an input layer, followed by a hidden layer, or reservoir, which is typically
a recurrent neural network of nonlinear units, and the readout module, which is a
simple linear model. In contrast to traditional artificial RNNs, the recurrent con-
nections within the reservoir are fixed; only the connections between the reservoir
and the readoutmodule are trained.More importantly, RC allows arbitrary network
architecture and dynamics to be implemented by the experimenter. Hence,
biologically-plausible wiring patterns (top panel) and different types of local
dynamics (bottom panel) can be superimposed on the reservoir. b By training
connectome-informed reservoirs in a variety of tasks spanning multiple cognitive
domains, we can systematically link network structure and dynamics to identifiable
sets of computational properties. By doing so, we can build an extensive dictionary
of structure-function relationships in which we relate brain network structure and
dynamics to fundamental blocks of computation. c Other applications of this
hybrid framework are for instance the investigation of how variations in con-
nectome architecture support individual differences in computational capacity, or

the functional consequences of network perturbations due to pathology or exter-
nal stimulation, or how structural adaptations across the lifespan or evolution
shape the computational capacity of brain networks. In this way, the RC paradigm
offers a tool for neuroscientists to investigate hownetwork organization andneural
dynamics interact to support learning in biologically-informed reservoirs. Credits:
Young couple icon in panel (c) designed by Gordon Johnson from pixabay.com.
Senior couple in panel (c) designedbyLizaveta Kadol fromVecteezy.com. Kids icon
in panel (c) designed by clipart.me from FreeImages.com. Dolphin icon in panel (c)
designed by Yulia Bulgakova from Vecteezy.com. Cat icon in panel (c) designed by
gdakaska frompixabay.com.Wolf, rabbit, deer and bear icons in panel (c) designed
by DesignsByOtto from Etsy.com. Horse, bat and macaque icons in panel (c)
designed by svgsilh.com. “Disappointed", “crying", “crazy", “scolding", “disabled
child", “sick" and “mental illness" icons in panel (c) designedbyGanKhoonLay from
thenounproject.com. Parkinson’s disease icon in panel (c) designed by Peter van
Driel from thenounproject.com. Paranoia icon in panel (c) designed by Adrien
Coquet from thenounproject.com.
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Apart from the advantages that RC offers to the neuroscience
community, this paradigm is also promising fromanengineering point
of view. Reservoirs can be realized using physical systems, substrates
or devices, as opposed to – generally time- and energy-consuming —

simulated RNNs55,56. In this regard, the architecture of these neuro-
morphic chips could benefit from the emerging understanding of
connection patterns in biological networks57–59. For instance, system-
atically mapping combinations of network attributes and dynamical
regimes to a range of computational functions could assist the design
of ad hoc or problem-specific tailored architectures. Due to their
physical nature, neuromorphic systems are limited by spatial, material
and energetic constraints, akin to biological neural networks. Because
of this, insights gained about the economical organization of brain
networks could contribute to the cost-effective design of these
information-processing systems35. Furthermore, the fact that training
only occurs at the readout stage makes RC an extraordinarily com-
putationally efficient learning approach. In addition to this, parallel
information processing can be achieved by simultaneously training
multiple readoutmodules to performvarious parallel tasks. Therefore,
physical RC and RC in general, provide a powerful method for faster
and simpler multi-task learning, compared to other RNNs. Thanks to
the dynamical and versatile nature of the reservoir, the RC paradigm is
perfectly suited for a wide range of supervised tasks involving the
processing of temporal and sequential data. These include: time series
prediction, dynamical pattern generation, classification and segmen-
tation, control, signal processing, and monitoring of rare events,
amongothers60. Becauseof all these reasons, physical RC systemshave
become ideal candidates for the development of novel brain-inspired
computing architectures61.

RESULTS
The conn2res toolbox
In a nutshell, conn2res is an open-source Python toolbox that allows
users to implement biological neural networks as reservoirs to per-
form cognitive tasks (https://github.com/netneurolab/conn2res). The
toolbox is built on top of the following well established, documented

andmaintained Python package dependencies: NumPy (https://numpy.
org;62–64), SciPy (https://scipy.org;65), pandas (https://pandas.pydata.
org;66), Scikit-Learn (https://scikit-learn.org;67), Gym (https://www.
gymlibrary.dev;68), NeuroGym (https://neurogym.github.io;53),
ReservoirPy (https://github.com/reservoirpy/reservoirpy;69), bctpy
(https://github.com/aestrivex/bctpy;70), Seaborn (https://seaborn.
pydata.org;71) and Matplotlib (https://matplotlib.org;72). The tool-
box is also interoperable with other relevant Python packages
including The Virtual Brain (https://www.thevirtualbrain.org;73),
bio2art (https://github.com/AlGoulas/bio2art;74), NeuroSynth
(https://neurosynth.org;75), Neuromaps (https://neuromaps-main.
readthedocs.io;76) and the Enigma Toolbox (https://enigma-toolbox.
readthedocs.io;77). Besides its extensive interoperability with other
Python packages, a major strength of the conn2res toolbox is its
flexibility in the choice of the different components that make part of
the main RC workflow. The conn2res toolbox was expressly con-
ceived as a tool for neuroscientists to explore a variety of hypotheses
about structure-function coupling in brain networks. Therefore,
compared to other RC-related packages, it offers higher flexibility in
terms of network architecture, local dynamics, learning algorithms,
task paradigms and performance metrics. To our knowledge, some of
these are usually fixed or limited in other RC packages. Table S1
compares the conn2res toolbox against other well-known RC Python
packages69,78, based on these criteria.

The baseline conn2res workflow requires the following input
arguments (Fig. 3a): (i) task name or dataset: the name of the task to be
performed, or a labeled dataset of input-target pairs for supervised
learning can also beprovided. conn2res is a wrapper of NeuroGym53, a
curated collection of behavioral paradigms that were designed to
facilitate the training of neural network models, and that are relevant
for the neuroscience community. All of the 20+ tasks available in
NeuroGym are also available in conn2res — some of these include
perceptual decision making, context-dependent decision making,
delayed comparison, delayed-paired association and delayed match
category —; (ii) connectome: the connectivity matrix, which serves as
the reservoir’s network architecture. The toolbox supports binary and
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Fig. 2 | The evolutionof reservoir computing. aGeneric recurrent neural network
(RNN) model. In classic RNNs, recurrent connections are learned via
backpropagation-through-time146. The network topology that emerges from train-
ing does not necessarily result in biologically-plausible connectivity patterns.b The
conventional reservoir computing architecture consists of a RNN with randomly
assignedweights. The connections of the reservoir remainfixedduring training and
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readout module. Examples of this include classic liquid state machines32 and echo-
state-networks36. c Thanks to advances in imaging technologies, it is now possible
to implement reservoirs with network architectures informed by empirical struc-
tural connectivity networks or connectomes. This allows us to explore the link
between structure and function in biological brain networks from a computational
point of view.
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weighted connectivity matrices of both directed and undirected net-
works; (iii) input nodes: the set of nodes that receive the external input
signals concerning the task at hand; (iv) readout nodes: the set of
nodes ormodules fromwhich informationwill be retrieved to train the
linear model in the readout module; (v) reservoir local dynamics: the
type of dynamics governing the activation of the reservoir’s units.
Local dynamics can be split into two categories: discrete-time, gov-
erned by difference equations and continuous-time, based on differ-
ential equations. The former category includes both linear and
nonlinear artificial neuron models with activation functions such as
ReLU, leaky ReLU, sigmoid, and hyperbolic tangent, whereas the latter
category includes a nonlinear spiking neuron model. The underlying
leaky-integrate-and-fire neuron model is based on the framework
proposed in79, with model parameters from80 and implements a
double-exponential synapticfilter for the presynaptic spike trains. This
flexiblemodel provides higher biological plausibility, notably allowing
for user-specified heterogeneous synaptic time constants, artificial
stimulations/inhibitions, and interneuron-specific connectivity
constraints79,81; (vi) linear model: specified as an instance of a linear
model estimator from the Scikit-Learn library to be implemented
for learning by the readout module67.

The typical conn2res workflow is depicted in Fig. 3b. In the first
stage, fetch task dataset, a supervised dataset consisting of input-label

pairs is either fetched from the conn2res repository, if the name of
the task is provided by the user, or directly loaded if an external path is
provided instead. In the second stage, set connectivity matrix, an
instance of a reservoir object is created, and its network architecture
and dynamics are set based on the connectivity matrix and the type of
local nonlinearity specified by the user, respectively. In the third stage,
simulate reservoir dynamics, the task inputs from the previous stage
are introduced as external signals to the reservoir through the set of
input nodes specified by the user. The dynamical models in the con-
n2res toolbox simulate the time evolution of the reservoir’s internal
units (which are activated thanks to the propagation of the external
input signals), and generate time series activity for each node in the
reservoir. In the fourth stage, learning, the time series activity of the
readout nodes or modules specified by the user are retrieved and
passed on to the readout module, together with the task labels from
the first stage. Both of these are used to train the linear model in the
readout module. Finally, during the fifth and last stage, assess perfor-
mance, depending on the nature of the reservoir, the final output can
be either a single performance score, or a performance curve that
displays performance as a function of the parameter that controls for
the qualitative behavior of the reservoir’s dynamics (i.e., stable, critical
or chaotic). Various performance metrics are currently available
depending on whether the task requires a classification or a regression
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Fig. 3 | conn2res toolbox. a The general conn2res workflow requires the fol-
lowing parameters to be provided by the user: (i) a task name or a supervised
learning dataset; (ii) a connectome or connectivitymatrix; (iii) a set of input nodes;
(iv) a set of readout nodes ormodules; (v) the type of local dynamics, which can be
either spiking neurons, artificial neurons (with a variety of activation functions), or
memristive devices (for the simulation of physical reservoirs); and (vi) the linear
model to be trained in the readout module. b In the mainstream conn2res

workflow the input signal (X) is introduced to the reservoir through the input nodes

(blue nodes). The signal propagates through the network, activating the states of
the units within the reservoir. The activation states of the readout nodes (purple
nodes) are then retrievedandused to train a linearmodel to approximate the target
signal (Y). Depending on the type of the reservoir, the performance can be a single
score or a curve of performance as a function of a parameter that tunes the
dynamics of the reservoir35. c The conn2res toolbox has a modular architecture. It
consists of six modules, each one comprising functions that support a specific step
along the conn2res pipeline.

Article https://doi.org/10.1038/s41467-024-44900-4

Nature Communications |          (2024) 15:656 5



model. To facilitate the user’s experience, the toolbox provides several
example scripts that illustrate use-case driven workflows.

The conn2res toolbox has a modular design. It consists of six
modules, each one containing functions that support a specific step
along the mainstream conn2res pipeline (Fig. 3c). The wrapper
functions and classes used to generate the task datasets can be found
in the tasks.pymodule. All types of manipulations on the connectivity
matrix, such as binarization, weight scaling, normalization and rewir-
ing, are handled by the Conn class in the connectivity.py module.
Reservoir’s features including its network architecture, local dynamics
and the retrieval of the reservoir’s activation states, are handled by the
Reservoir class in the reservoir.py module. The functions in charge of
the training and test of the linear model in the readout module are
contained in the readout.py and performance.pymodules, respectively.
Finally, the plotting.py module offers a set of plotting tools that assist
with the visualization of the different types of data generated along the
pipeline, including the task input-output data, the 2D connectivity
matrix of the reservoir’s network architecture, the simulated reservoir
states, the decision function of the readout module, and the perfor-
mance curve.

Tutorial
This section provides a broader overview of themultiple experimental
settings and inferences that the conn2res toolbox supports. The first
part consists of a detailed step-by-step example to illustrate the main
conn2res workflow in action. The second part presents three applied
cases in which specific hypotheses are proposed and tested using the
toolbox. In each case, we evaluate the effect of global network archi-
tecture and dynamics on the computational capacity of reservoirs
informed by connectomes of different animal species, reconstructed
at different scales and obtained from different imaging modalities.
Annotated notebooks and scripts to reproduce these results are
included in the toolbox documentation https://github.com/
netneurolab/conn2res/tree/master/examples.

Example 1: toolbox components. In this first examplewe quantify the
effect of different types of local and global dynamics on the perfor-
mance of a connectome-informed reservoir across two cognitive tasks:
perceptual decision making82 and context-dependent decision
making83. To do so, we implement an echo-state network36 whose
connections are constrained by a human consensus connectome
reconstructed fromdiffusion-weightedMRI data (n = 66 subjects. Data
source: https://doi.org/10.5281/zenodo.2872624)84. To select the set of
input and readout nodes, we use a functional connectivity-based par-
tition of the connectome into intrinsic networks85. We define input
nodes as a set of randomly selected brain regions from the visual
system, and for the readout nodes we select all brain regions in the
somatomotor system. Local dynamics are determined by the activa-
tion function of the reservoir’s units. Here we use sigmoid and
hyperbolic tangent activation functions. Global network dynamics are
set by parametrically tuning α, which corresponds to the spectral
radius of the connectivity matrix86. The dynamics of the reservoir are
considered to be stable if α < 1, and chaotic if α > 1. When α ≈ 1, the
dynamics are said to be critical46. Because both tasks can be treated as
supervised classification problems, we use a Ridge classifier model to
train the readout module. We generate 1000 trials per task (70%
training, 30% test), and we perform each task using 50 different rea-
lizations of the task labeled dataset. The distribution of performance
scores is reported across the 50 instances of the task dataset.

Next we walk the reader through each of the steps along themain
conn2res pipeline, and use the visualization tools included in the
plotting.pymodule to depict themain output at each stage, facilitating
the conceptual understanding of the workflow. Details about the
practical implementation can be found in the examples folder of the
conn2res toolbox. Results for the perceptual and context-dependent

decision-making tasks are shown on the left and right columns of
Fig. 4, respectively. Top panel in Fig. 4 consists of a single plot that
displays the time series of the input (xi) and target labels (y) obtained
during the task dataset fetching process. The perceptual decision-
making task is a two-alternative forced choice task in which the
reservoir must be able to integrate two stimuli to decide which one is
higher on average (left column in Fig. 4). In the context-dependent
decision-making task the reservoir has to perform one of two different
perceptual discriminations, indicated by a contextual cue in every trial
(right column in Fig. 4). Trials are delimited by vertical black dot-
ted lines.

The second panel in Fig. 4 from top to bottom is a toy repre-
sentation of the assignment of the connectome-based connectivity
matrix to the reservoir’s network (center); it also shows the input
nodes (blue nodes on the left) used for the introduction of the external
input signal into the reservoir during the simulation of the reservoir’s
dynamics, and the readout nodes (purple nodes on the right) used for
the retrieval of information from the reservoir during the learning
phase. The third panel in Fig. 4 depicts the simulation of the reservoir’s
dynamics and it consists of two plots: the top plot presents the time
series of the input signals (x), while the bottom plot shows the simul-
taneous reservoir’s activation state at every time step. These plots help
the user visualize how reservoir states evolve as a function of the
external inputs. The fourth panel in Fig. 4 makes reference to the
learning process of the readout module during training. This panel
contains three plots: the time series of the input signal (top), the
decision function of the Ridge classifier (middle), and the predicted
versus the ground truth target signals (bottom). Finally, the fifth panel
in Fig. 4 shows the performance of the reservoir as a function of both
local and global network dynamics. This panel presents two plots, each
one corresponding to a different classification performance metrics:
balanced accuracy (top) and F1 score (bottom). Each plot displays two
curves that indicate how performance varies as a function of α, and
each curve corresponds to a different activation function: hyperbolic
tangent (pink) and sigmoid (green).

Results in Fig. 4 suggest that both local and global network
dynamics have an impact on task performance. At the local level, both
tasks benefit from having a hyperbolic tangent activation function,
compared to the sigmoid. However, dependence of task performance
on global network dynamics varies from one task to the other. In the
perceptual decision-making task, a choice must bemade based on the
time integration of two past stimuli, which means that a temporal
memory is required. Because stability enforces memory in the reser-
voir, computations required in the perceptual decision-making task
should take advantage of stable network dynamics32,42,43,49. This is
indeed the case: if the local nonlinearity is hyperbolic tangent, a
decrease in performance from stable (α < 1) to chaotic (α > 1) dynamics
is observed (pink lines in bottom panel on the left column of Fig. 4). If
the local nonlinearity is a sigmoid, however, the reservoir does not
show a strong dependence with respect to global network dynamics
(green lines inbottompanel on the left columnof Fig. 4). In contrast, in
the context-dependent decision-making task, a binary perceptual dis-
crimination must be made, and hence the reservoir must learn to dif-
ferentiate between two temporal patterns. Because chaotic dynamics
contribute to the separability property of a reservoir32,42,43,49, perfor-
mance in this task shouldbe enhancedby thepresence of chaos. This is
observed by an increase in performance as global network dynamics
transition from stable to chaotic (pink and green lines in bottom panel
on the right column of Fig. 4). Even though this is observed for both
types of local nonlinearities - i.e., hyperbolic tangent and sigmoid - the
effects are stronger for the hyperbolic tangent type. As expected, the
effect of local and global network dynamics on task performance
depends on the type of computations required by the task at hand.

This toy example helps us illustrate the flexibility of the
conn2res toolbox in terms of choice of network architecture, local
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and global network dynamics, computational property, and perfor-
mance metrics. Even though the type of experiments that the con-
n2res toolbox has been designed for have more of an exploratory
character, we expect that as imaging technologies improve together
with our understanding of the anatomical structure of biological
brains, more hypothesis-driven of experiments can be carried out
with conn2res.

Example 2: applications. In the second part of the tutorial we show
how the toolbox can be applied to address three specific biological
questions. First, we quantify the memory capacity of human white
matter connectomes reconstructed using diffusion-weighted MRI
(n = 66;84). Here we use subcortical regions as input nodes and cortical
regions as readout nodes. We then ask whether memory capacity
specifically depends on the topological organization of the brain,
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rather than low-level features such as density or degree sequence. To
address this question, we compare memory capacity in a group-level,
empirical connectomeagainstmemory capacity in a populationof 500
randomly rewired null connectomes with preserved density and
degree sequence54,87. Figure 5a shows that at criticality (α = 1), the
memory capacity of empirical brain networks is significantly greater
than in rewired nulls, suggesting that the topology of the human brain
confers computational function35.

In the previous example we focused on global computational
capacity and showed that it relates to global network topology. For the
second example, we demonstrate how the toolbox can be used to
make inferences about regional heterogeneity or specificity for com-
putational capacity. To address this question we implement the per-
ceptual decision-making task on a single subject-level, connectome-
informed reservoir. We stratify cortical nodes according to their
affiliation with the canonical intrinsic networks85. Specifically, we use
brain regions in the visual network as input nodes, and the remaining
networks separately as a readout module each to quantify task per-
formance. Figure 5b shows prominent differentiation in performance
depending on which network is chosen as the readout module. Inter-
estingly, the two modules with the greatest performance are the
default mode and somatomotor networks, consistent with the notion
that perceptual decision making involves integration of sensory
inputs, comparison with internal goals, and formulation of an appro-
priate motor response88. Collectively, these results demonstrate how
connectome-based reservoir computing can be used to make infer-
ences about the computational capacity of anatomically circum-
scribed neural circuits.

For the final example, we show how the toolbox can be applied to
comparative questions in which a researcher seeks to compare net-
works. In this example, we implement connectomes reconstructed
from four different species: fruit fly89, mouse90, rat91 andmacaque92. As
in the first example, we compare memory capacity in each empirical
connectomewith a population of 500 rewired null networks. Figure 5c
shows that, despite differences in brain size, connectome resolution
and reconstruction technique, the four model organism connectomes
show a similar dependence on dynamics. Importantly, as with the
human connectome, peak memory capacity is significantly greater in
the empirical connectomes compared to the rewired nulls, except for
the fruit fly, suggesting that this principle is potentially ubiquitous
across nervous systems.

Discussion
Despite common roots, modern neuroscience and artificial intelli-
gence have followed diverging paths. The advent of high-resolution
connectomics and the incredible progress of artificial neural net-
works in recent years present fundamentally new and exciting
opportunities for the convergence of these vibrant and fast-paced
fields. Here we briefly summarized the principles of the RC paradigm
and introduced conn2res, an open-source code initiative designed
to promote cross-pollination of ideas and bridgemultiple disciplines,

including neuroscience, psychology, engineering, artificial intelli-
gence, physics and dynamical systems. Below we look outward and
propose how the conn2res toolbox can address emerging questions
in these fields.

The conn2res toolbox embodies the versatility of the RC para-
digm itself. By allowing arbitrary networkarchitectureanddynamics to
be superimposed on the reservoir, conn2res can be applied to
investigate a wide range of neuroscience problems: from under-
standing the link between structure and function, studying individual
differences in behavior, to exploring the functional consequences of
network perturbations, such as disease or stimulation, or the compu-
tational benefits of specific architectural features, such as hierarchies
and modules. The conn2res toolbox can readily accommodate net-
work reconstructions at different spatial scales, from microcircuits to
large-scale brain networks, and obtained using different imaging
modalities, such as tract-tracing or diffusion MRI. Networks recon-
structed at different points in either development and evolution can
also be implemented in the toolbox to study, for instance, how
structural adaptations across ontogeny and phylogeny shape compu-
tational capacity in brain networks. Collectively, conn2res offers new
and numerous possibilities to discover how computation and func-
tional specialization emerge from the brain’s anatomical network
structure.

The RC paradigm can also be adapted to jointly study the influ-
ence of network wiring and spatial embedding on computation.
Namely, the placement of connections in the brain is subject to
numerous material, energetic and spatial constraints, a factor that is
often overlooked in classical paradigms that focus exclusively on
network topology93. Right now the models included in the conn2res
toolbox do not explicitly take into account spatial embedding but they
can be readily adapted to do so. One way is to introduce conduction
delays that are proportional to inter-regional connection lengths or
geodesic distances over the cortical surface94,95. Another interesting
and slightly different approach that incorporates geometric con-
straints is the recently introduced concept of spatially-embedded
recurrent neural networks (seRNNs)96. These are recurrent networks
with adaptive weights, confined within a 3D Euclidean space, whose
learning is constrained by biological optimization processes, like the
minimization of wiring costs or the optimization of inter-regional
communicability, in addition to the maximization of computational
performance. When the pruning of the network is guided by these
biological optimization principles, the resulting network architecture
displays characteristic features of biological brain networks, such as
modular structure with a small-world topology, and the emergence of
functionally specialized regions that are spatially co-localized and
implement an energetically-efficient, mixed-selective code96,97. More
broadly the cortex, which is typically studied in thesemodels, is part of
a wider network of the central nervous system that is embedded
in a perpetually changing environment. The RC paradigm can
accommodate this “embodied” view of the brain. Specifically, RC
models can include adaptive homeostatic mechanisms that regulate

Fig. 4 | Toolbox components. Perceptual decision making (left column): is a two-
alternative forced choice task (y = {1, 2}) in which the reservoir must be able to
integrate two stimuli (x2 and x3; x1 serves as a bias) to decidewhich one is higher on
average. Context-dependent decision-making task (right column): in this task the
reservoir has to perform one of two different perceptual discriminations (y = {1, 2}),
indicated by a contextual cue in every trial (determined by x1 to x7). From top to
bottom: the first panel displays the time series of the input (xi) and target (y) signals
obtained during the task dataset fetching step. The second panel presents a toy
representation of the assignment of a connectome-based connectivity matrix to
the reservoir’s network (center). It also shows the set of input (left) and readout
(right) nodes selected for the analysis35. The third panel displays the simulated
reservoir’s dynamics; the top plot shows the time series of the input signals and the
bottom plot shows the simultaneous activation states of the readout nodes within

the reservoir (results shown here correspond to the simulated reservoir states with
hyperbolic tangent as activation function). The fourth panel illustrates the learning
process that takes place in the readout module during training. At every time step,
the top plot shows the input signals, themiddle plot shows the decision function of
the classifier --- in the readout module ---, and the bottom plot shows the predicted
versus the target signal. Finally, the fifth panel shows the performance curves as a
function of both local (hyperbolic tangent in pink and sigmoid in green) and global
(varying the spectral radius α of the connectivity matrix) network dynamics. Two
metrics were used to measure the performance of the classification: balanced
accuracy (top) and F1 score (bottom). Solid lines represent mean performance
across 500 iterations of the task dataset and shaded regions correspond to the 95%
confidence interval.
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Fig. 5 | Applied examples. a Inferences on global network organization: a
reservoir informed by a human consensus connectome (n = 66 subjects;
diffusion-weighted MRI84) was implemented to perform a memory capacity
task. Subcortical regions were used as input nodes while cortical regions were
used as readout nodes. (Left) In all cases ---panels (a–c)---, global dynamics
were tuned to transition from stable (α < 1) to chaotic (α > 1), where α corre-
sponds to the spectral radius of the connectivity matrix. (Right) The perfor-
mance of the empirical network was compared against the performance of a
family of 500 rewired nulls that preserve network density and degree
sequence54,87. At criticality (αcrit = 1), empirical networks perform significantly
better than rewired nulls (p = 0.002). b Anatomical inferences: a single,
subject-level connectome-informed reservoir was implemented to perform a
perceptual decision-making task (solid lines represent mean performance
across 500 iterations of the task dataset; shaded regions correspond to the
95% confidence interval). (Right) Cortical regions were stratified according to
the intrinsic network they belong to. Brain regions in the visual network were
used as input nodes; the remaining intrinsic networks were used as separate

readout modules each to quantify task performance. (Left) Across a wide
range of α values (α > 0.5), all intrinsic networks display significantly different
behavior (one-way ANOVA F = 1143.50, p < 0.002 at αcrit = 1), thus suggesting
functional specialization across these networks. c Cross-species comparison:
we implemented four distinct reservoirs, each informed by the connectome of
a different model organism: fruit fly89, mouse90, rat91 and macaque92. (Left)
Connectome-informed reservoirs were trained to perform a memory capacity
task. Sensory areas were used as input nodes while motor areas were used as
readout nodes. As in (a), empirical networks were compared to a family of 500
rewired nulls87. At peak memory capacity, biologically-informed connectomes
perform significantly better than rewired nulls, except for the fruit fly (fruit fly:
p = 0.11 at αpeak = 0.9, mouse: p < 0.002 at αpeak = 1.05, rat: p < 0.002 at
αpeak = 1.15, macaque: p < 0.002 at αpeak = 1.15). Credits: Young couple icon in
panel (a) designed by Gordon Johnson from pixabay.com. Fruit fly, rat and
monkey icons in panel (c) designed by Freepik.com. Mouse icon in panel (c)
designed by CraftStarters.com.

Article https://doi.org/10.1038/s41467-024-44900-4

Nature Communications |          (2024) 15:656 9

https://pixabay.com
https://www.freepik.com
https://craftstarters.com


brain-environmental feedback loops to ensure that reservoirs are
maintained in a desired dynamical state such as criticality98–100.

RC is often presented as a unified framework to train RNNs, but in
a broader sense, it is a general framework to compute with high-
dimensional, nonlinear dynamical systems, regardless of the choice of
reservoir! Since any high-dimensional physical system with nonlinear
dynamics could serve as reservoir — and these are abundant in both
natural and man-made systems — a new field of applied research has
emerged: physical reservoir computing. Here the goal is to exploit the
rich dynamics of complex physical systems as information-processing
devices. Physical substrates used for reservoirs are quite diverse: from
analog circuits101–104, field programmable gate arrays105–108, photonic/
opto-electronic devices109–114, spintronics115–117, quantum dynamics118,119,
nanomaterials120–126, biological materials and organoids127–133, mechan-
ics and robotics134–136, up to liquids or fluids137,138, and most recently,
origami structures139. The development of physical reservoir systems
has been accompanied by advances in more efficient and effective RC
frameworks, for instance by including time delays140–142. As physical
reservoir computing becomes more popular, we envision the use of
conn2res as a workbench to explore the effect of network interac-
tions on the computational properties of physical reservoirs. Antici-
pating this, conn2res is currently equipped with a dedicated class for
physical reservoirs, which allows memristive networks — a promising
alternative for neuromorphic computing122 — to be implemented as
reservoirs. In this sense, the paradigm and the conn2res toolbox can
be applicable to a wide variety of problems in adjacent scientific dis-
ciplines. From the neuro-connectomics perspective, conn2res offers
new and numerous possibilities to discover how structure and func-
tion are linked in biological brain networks. From the artificial intelli-
gence perspective, reverse-engineering biological networks will
provide insights and novel design principles for re-engineering artifi-
cial, brain-inspired RC architectures and systems.

Altogether, conn2res is an easy-to-use toolbox that allows bio-
logical neural networks to be implemented as artificial neural net-
works. By combining connectomics and AI, the RC paradigm allows us
to address new questions in a variety of scales of description andmany
adjacent fields. We hope that by reconceptualizing function as com-
putation, conn2res allows us to take the next step towards under-
standing structure-function relationships in brain networks.

Data availability
The structural human connectome data used in the first and second
parts of the tutorial section of the present report are publicly available
at https://doi.org/10.5281/zenodo.287262484. The structural con-
nectomes of the four model organisms used in the second part of the
tutorial section are publicly available at: fruit fly (https://www.
flycircuit.tw;89), mouse (http://connectivity.brain-map.org;90), rat
(http://brancusi1.usc.edu/connections/grid/168;91) and macaque (sup-
porting information for https://www.pnas.org/doi/epdf/10.1073/pnas.
1008054107;92,143). To facilitate the reproduction of the results, all
processed connectivity data used for the Tutorial section can be
directly downloaded at https://doi.org/10.5281/zenodo.10205004144.

Code availability
Source code for conn2res is available on GitHub (https://github.com/
netneurolab/conn2res) and is provided under the BSD 3-Clause “New"
or “Revised" License. We have integrated conn2res with Zenodo
(https://zenodo.org/doi/10.5281/zenodo.10437157145), which generates
unique digital object identifiers (DOIs) for each new release of the
toolbox. Researchers can access comprehensive online documenta-
tion via readthedocs (https://conn2res.readthedocs.io). Finally, as an
open-source toolbox, conn2res is open to user suggestions and
improvements, ensuring that it remains a continuously evolving
resource. All code used for data processing, simulation, analysis, and
figure generation relies on the following open-source Python

packages: NumPy62–64, Scipy65, Pandas66, Scikit-learn67, bctpy https://
github.com/aestrivex/bctpy70, Gym https://github.com/openai/gym68,
NeuroGym https://github.com/neurogym/neurogym53, Matplotlib72,
and Seaborn71.

References
1. Sporns, O. Structure and function of complex brain networks.

Dialogues Clin. Neurosci. 15, 247–262 (2013).
2. Sporns, O., Tononi, G. & Kötter, R. The human connectome: a

structural description of the human brain. PLoS Comput. Biol. 1,
e42 (2005).

3. Insel, T. R., Landis, S. C. & Collins, F. S. The NIH brain initiative.
Science 340, 687–688 (2013).

4. Van den Heuvel, M. P., Bullmore, E. T. & Sporns, O. Comparative
connectomics. Trends Cogn. Sci. 20, 345–361 (2016).

5. Assaf, Y., Bouznach, A., Zomet, O., Marom, A. & Yovel, Y. Con-
servation of brain connectivity and wiring across the mammalian
class. Nat. Neurosci. 23, 805–808 (2020).

6. Suárez, L. E. et al. A connectomics-based taxonomy of mammals.
Elife 11, e78635 (2022).

7. Suárez, L. E., Markello, R. D., Betzel, R. F. & Misic, B. Linking
structure and function in macroscale brain networks. Trends
Cogn. Sci. 24, 302–315 (2020).

8. Breakspear, M. Dynamic models of large-scale brain activity. Nat.
Neurosci. 20, 340–352 (2017).

9. Uddin, L. Q. Bring the noise: reconceptualizing spontaneous
neural activity. Trends Cogn. Sci. 24, 734–746 (2020).

10. Cabral, J., Kringelbach, M. L. & Deco, G. Functional connectivity
dynamically evolves on multiple time-scales over a static struc-
tural connectome: models and mechanisms. NeuroImage 160,
84–96 (2017).

11. Mišić, B. & Sporns, O. From regions to connections and networks:
new bridges between brain and behavior. Curr. Opin. Neurobiol.
40, 1–7 (2016).

12. Seguin, C., Tian, Y. & Zalesky, A. Network communication models
improve the behavioral and functional predictive utility of the
human structural connectome. Netw. Neurosci. 4,
980–1006 (2020).

13. Melozzi, F. et al. Individual structural features constrain the func-
tional connectome. Proc. Natl Acad. Sci. USA 116,
26961–26969 (2019).

14. Bettinardi, R.G. et al. Howstructure sculpts function: unveiling the
contribution of anatomical connectivity to the brain’s sponta-
neous correlation structure. Chaos 27, 047409 (2017).

15. Goñi, J. et al. Resting-brain functional connectivity predicted by
analytic measures of network communication. Proc. Natl Acad.
Sci. USA 111, 833–838 (2014).

16. Zhang, M. & Saggar, M. Complexity of intrinsic brain dynamics
shaped by multiscale structural constraints. Preprint at bioRxiv
https://doi.org/10.1101/2020.05.14.097196 (2020).

17. Sporns, O. Network attributes for segregation and integration in
the human brain. Curr. Opin. Neurobiol. 23, 162–171 (2013).

18. Fletcher, J. M. & Wennekers, T. From structure to activity: using
centrality measures to predict neuronal activity. Int. J. Neural Syst.
28, 1750013 (2018).

19. Sethi, S. S., Zerbi, V., Wenderoth, N., Fornito, A. & Fulcher, B. D.
Structural connectome topology relates to regional bold signal
dynamics in the mouse brain. Chaos. 27, 047405 (2017).

20. Bertolero, M. A., Yeo, B. T., Bassett, D. S. & D’Esposito, M. A
mechanistic model of connector hubs, modularity and cognition.
Nat. Hum. Behav. 2, 765–777 (2018).

21. Watts, D. J. & Strogatz, S. H. Collective dynamics of ‘small-world’
networks. Nature 393, 440–442 (1998).

22. Sporns, O. & Zwi, J. D. The small world of the cerebral cortex.
Neuroinformatics 2, 145–162 (2004).

Article https://doi.org/10.1038/s41467-024-44900-4

Nature Communications |          (2024) 15:656 10

https://doi.org/10.5281/zenodo.2872624
https://www.flycircuit.tw
https://www.flycircuit.tw
http://connectivity.brain-map.org
http://brancusi1.usc.edu/connections/grid/168
https://www.pnas.org/doi/epdf/10.1073/pnas.1008054107
https://www.pnas.org/doi/epdf/10.1073/pnas.1008054107
https://doi.org/10.5281/zenodo.10205004
https://github.com/netneurolab/conn2res
https://github.com/netneurolab/conn2res
https://zenodo.org/doi/10.5281/zenodo.10437157
https://conn2res.readthedocs.io
https://github.com/aestrivex/bctpy
https://github.com/aestrivex/bctpy
https://github.com/openai/gym
https://github.com/neurogym/neurogym
https://doi.org/10.1101/2020.05.14.097196


23. Bassett, D. S. & Bullmore, E. Small-world brain networks. Neu-
roscientist 12, 512–523 (2006).

24. Chen, Z. J., He, Y., Rosa-Neto, P., Germann, J. & Evans, A. C.
Revealing modular architecture of human brain structural net-
works by using cortical thickness from MRI. Cereb. Cortex 18,
2374–2381 (2008).

25. Betzel, R. F. et al. The modular organization of human anatomical
brain networks: accounting for the cost of wiring. Netw. Neurosci.
1, 42–68 (2017).

26. Bertolero, M. A., Yeo, B. T. & D’Esposito, M. The modular and
integrative functional architecture of the human brain. Proc. Natl
Acad. Sci. USA 112, E6798–E6807 (2015).

27. Hilgetag, C. C. & Kaiser, M. Clustered organization of cortical
connectivity. Neuroinformatics 2, 353–360 (2004).

28. Zamora-López, G., Zhou, C. & Kurths, J. Cortical hubs form a
module for multisensory integration on top of the hierarchy of
cortical networks. Front. Neuroinform. 4, 1 (2010).

29. van den Heuvel, M. P., Kahn, R. S., Goñi, J. & Sporns, O. High-cost,
high-capacity backbone for global brain communication. Proc.
Natl Acad. Sci. USA 109, 11372–11377 (2012).

30. Marblestone, A. H., Wayne, G. & Kording, K. P. Toward an inte-
gration of deep learning and neuroscience. Front. Comput. Neu-
rosci. 10, 94 (2016).

31. Richards, B. A. et al. A deep learning framework for neuroscience.
Nat. Neurosci. 22, 1761–1770 (2019).

32. Maass, W., Natschläger, T. & Markram, H. Real-time comput-
ing without stable states: a new framework for neural com-
putation based on perturbations. Neural Comput. 14,
2531–2560 (2002).

33. Buonomano, D. V. & Maass, W. State-dependent computations:
spatiotemporal processing in cortical networks. Nat. Rev. Neu-
rosci. 10, 113 (2009).

34. Prince, L. Y. et al. Current state and future directions for learning in
biological recurrent neural networks: a perspectivepiece. Preprint
at arXiv https://doi.org/10.48550/arXiv.2105.05382 (2021).

35. Suárez, L. E., Richards, B. A., Lajoie,G. &Misic, B. Learning function
from structure in neuromorphic networks. Nat. Mach. Intell. 3,
771–786 (2021).

36. Jaeger, H. The “echo state” approach to analysing and training
recurrent neural networks-with an erratum note. Bonn Ger. Ger.
Natl Res. Cent. Inf. Technol. GMD Tech. Rep. 148, 13 (2001).

37. Verstraeten, D., Schrauwen, B., d’Haene, M. & Stroobandt, D. An
experimental unification of reservoir computing methods. Neural
Netw. 20, 391–403 (2007).

38. Dominey, P. F. & Arbib, M. A. A cortico-subcortical model for
generation of spatially accurate sequential saccades. Cereb.
Cortex 2, 153–175 (1992).

39. Dominey, P. F. Complex sensory-motor sequence learning based
on recurrent state representation and reinforcement learning. Biol
Cybern. 73, 265–274 (1995).

40. Dominey, P., Arbib, M. & Joseph, J.-P. A model of corticostriatal
plasticity for learning oculomotor associations and sequences. J.
Cogn. Neurosci. 7, 311–336 (1995).

41. Lukoševičius, M. & Jaeger, H. Reservoir computing approaches to
recurrent neural network training. Comput. Sci. Rev. 3,
127–149 (2009).

42. Legenstein, R. & Maass, W. Edge of chaos and prediction of
computational performance for neural circuit models. Neural
Netw. 20, 323–334 (2007).

43. Legenstein, R. & Maass, W. What makes a dynamical system
computationally powerful. In New Directions in Statistical
Signal Processing: From Systems to Brain 127–154 (The MIT
Press, 2006).

44. Maass, W. & Markram, H. On the computational power of circuits
of spiking neurons. J. Comput. Syst. Sci. 69, 593–616 (2004).

45. Deco, G. & Jirsa, V. K. Ongoing cortical activity at rest: criticality,
multistability, and ghost attractors. J. Neurosci. 32,
3366–3375 (2012).

46. O’Byrne, J. & Jerbi, K. How critical is brain criticality? Trends
Neurosci. 45, 820–837 (2022).

47. Cocchi, L., Gollo, L. L., Zalesky, A. &Breakspear,M.Criticality in the
brain: a synthesis of neurobiology, models and cognition. Prog.
Neurobiol. 158, 132–152 (2017).

48. Langton, C. Computation at the edge of chaos: phase transition
and emergent computation. Phys. D Nonlinear Phenom. 42,
12–37 (1990).

49. Bertschinger, N. & Natschläger, T. Real-time computation at the
edge of chaos in recurrent neural networks. Neural Comput. 16,
1413–1436 (2004).

50. Subramoney, A., Scherr, F. & Maass, W. Reservoirs learn to learn.
In Reservoir Computing: Theory, Physical Implementations, and
Applications 59–76 (Springer, Singapore, 2021).

51. Tagliazucchi, E., Balenzuela, P., Fraiman, D. & Chialvo, D. R. Criti-
cality in large-scale brain fMRI dynamics unveiled by a novel point
process analysis. Front. Physiol. 3, 15 (2012).

52. Kitzbichler, M. G., Smith, M. L., Christensen, S. R. & Bullmore, E.
Broadband criticality of human brain network synchronization.
PLoS Comput. Biol. 5, e1000314 (2009).

53. Molano-Mazon, M. et al. Neurogym: an open resource for devel-
oping and sharingneuroscience tasks. Preprint at PsyArXivhttps://
doi.org/10.31234/osf.io/aqc9n (2022).

54. Váša, F. &Mišić, B. Null models in network neuroscience.Nat. Rev.
Neurosci. 23, 493–504 (2022).

55. Tanaka, G. et al. Recent advances in physical reservoir computing:
a review. Neural Netw. 115, 100–123 (2019).

56. Nakajima, K. Physical reservoir computing–an introductory per-
spective. Jpn. J. Appl. Phys. 59, 060501 (2020).

57. Loeffler, A. et al. Modularity andmultitasking in neuro-memristive
reservoir networks.Neuromorphic Comput. Eng. 1, 014003 (2021).

58. Loeffler, A. et al. Neuromorphic learning, working memory, and
metaplasticity in nanowire networks. Sci. Adv. 9,
eadg3289 (2023).

59. Fu, K. et al. Reservoir computing with neuromemristive nanowire
networks. In 2020 International Joint Conference on Neural Net-
works (IJCNN) 1–8 (IEEE, 2020).

60. Lukoševičius, M., Jaeger, H. & Schrauwen, B. Reservoir computing
trends. KI-Künstliche Intell. 26, 365–371 (2012).

61. Dale, M., Miller, J. F., Stepney, S. & Trefzer, M. A. Reservoir com-
puting in material substrates. In Reservoir Computing: Theory,
Physical Implementations, and Applications 141–166 (Springer,
Singapore, 2021).

62. Harris, C. R. et al. Array programming with NumPy. Nature 585,
357–362 (2020).

63. Walt, Svd, Colbert, S. C. & Varoquaux, G. The NumPy array: a
structure for efficient numerical computation. Comput. Sci. Eng.
13, 22–30 (2011).

64. Oliphant, T. E. A guide to NumPy, vol. 1 (Trelgol Publishing
USA, 2006).

65. Virtanen, P. et al. Scipy 1.0: fundamental algorithms for scientific
computing in Python. Nat. Methods 17, 261–272 (2020).

66. McKinney, W. et al. Data structures for statistical computing in
Python. In Proceedings of the 9th Python in Science Conference,
Vol. 445, 51–56 (Austin, TX, 2010).

67. Pedregosa, F. et al. Scikit-learn: Machine learning in Python. J.
Mach. Learn. Res. 12, 2825–2830 (2011).

68. Brockman, G. et al. OpenAI Gym. Preprint at bioRxiv https://doi.
org/10.48550/arXiv.1606.01540 (2016).

69. Trouvain, N., Pedrelli, L., Dinh, T. T. & Hinaut, X. ReservoirPy: an
efficient and user-friendly library to designecho state networks. In
Artificial Neural Networks and Machine Learning – ICANN 2020

Article https://doi.org/10.1038/s41467-024-44900-4

Nature Communications |          (2024) 15:656 11

https://doi.org/10.48550/arXiv.2105.05382
https://doi.org/10.31234/osf.io/aqc9n
https://doi.org/10.31234/osf.io/aqc9n
https://doi.org/10.48550/arXiv.1606.01540
https://doi.org/10.48550/arXiv.1606.01540


494–505 (Springer International Publishing, 2020). https://doi.
org/10.1007/978-3-030-61616-8_40.

70. Rubinov, M. & Sporns, O. Complex network measures of brain
connectivity: uses and interpretations. Neuroimage 52,
1059–1069 (2010).

71. Waskom, M. et al. seaborn: v0.7.0. Zenodo. https://doi.org/10.
5281/zenodo.45133 (2016).

72. Hunter, J. D. Matplotlib: a 2d graphics environment. Comput. Sci.
Eng. 9, 90–95 (2007).

73. Ritter, P., Schirner,M.,McIntosh, A. R. & Jirsa, V. K. The virtual brain
integrates computational modeling and multimodal neuroima-
ging. Brain Connect. 3, 121–145 (2013).

74. Goulas, A., Damicelli, F. & Hilgetag, C. C. Bio-instantiated recur-
rent neural networks: Integrating neurobiology-based network
topology in artificial networks. Neural Netw. 142, 608–618 (2021).

75. Yarkoni, T., Poldrack, R., Nichols, T., Van Essen, D. & Wager, T.
NeuroSynth: a new platform for large-scale automated synthesis
of human functional neuroimaging data. In Frontiers in Neu-
roinformatics Conference Abstract: 4th INCF Congress of Neu-
roinformatics. https://doi.org/10.3389/conf.fninf.2011.08.
00058 (2011).

76. Markello, R. D. et al. Neuromaps: structural and functional inter-
pretation of brain maps. Nat. Methods 19, 1472–1479 (2022).

77. Larivière, S. et al. The enigma toolbox: multiscale neural con-
textualization of multisite neuroimaging datasets. Nat. Methods
18, 698–700 (2021).

78. Damicelli, F. echoes: Echo state networks with python. https://
github.com/fabridamicelli/echoes (2019).

79. Kim, R., Li, Y. & Sejnowski, T. J. Simple framework for constructing
functional spiking recurrent neural networks. Proc. Natl Acad. Sci.
USA 116, 22811–22820 (2019).

80. Nicola, W. & Clopath, C. Supervised learning in spiking neural
networks with force training. Nat. Commun. 8, 2208 (2017).

81. Song, H. F., Yang, G. R. &Wang, X.-J. Training excitatory-inhibitory
recurrent neural networks for cognitive tasks: a simple andflexible
framework. PLoS Comput. Biol. 12, e1004792 (2016).

82. Britten, K. H., Shadlen,M. N., Newsome,W. T. &Movshon, J. A. The
analysis of visual motion: a comparison of neuronal and psycho-
physical performance. J. Neurosci. 12, 4745–4765 (1992).

83. Mante, V., Sussillo, D., Shenoy, K. V. & Newsome, W. T. Context-
dependent computation by recurrent dynamics in prefrontal
cortex. Nature 503, 78–84 (2013).

84. Griffa, A., Alemán-Gómez, Y., & Hagmann, P. Structural and
functional connectome from 70 young healthy adults [Data set].
Zenodo. https://doi.org/10.5281/zenodo.2872624 (2019).

85. Thomas Yeo, B. et al. The organization of the human cerebral
cortex estimated by intrinsic functional connectivity. J. Neuro-
physiol. 106, 1125–1165 (2011).

86. Seung, H. S. How the brain keeps the eyes still. Proc. Natl Acad.
Sci. USA 93, 13339–13344 (1996).

87. Maslov, S. & Sneppen, K. Specificity and stability in topology of
protein networks. Science 296, 910–913 (2002).

88. Heekeren,H. R.,Marrett, S. &Ungerleider, L.G. Theneural systems
that mediate human perceptual decision making. Nat. Rev. Neu-
rosci. 9, 467–479 (2008).

89. Chiang, A.-S. et al. Three-dimensional reconstruction of brain-
wide wiring networks in drosophila at single-cell resolution. Curr.
Biol. 21, 1–11 (2011).

90. Rubinov, M., Ypma, R. J., Watson, C. & Bullmore, E. T. Wiring cost
and topological participation of the mouse brain connectome.
Proc. Natl Acad. Sci. USA 112, 10032–10037 (2015).

91. Bota, M., Sporns, O. & Swanson, L. W. Architecture of the cerebral
cortical association connectome underlying cognition. Proc. Natl
Acad. Sci. USA 112, E2093–E2101 (2015).

92. Modha, D. S. & Singh, R. Network architecture of the long-distance
pathways in the macaque brain. Proc. Natl Acad. Sci. USA 107,
13485–13490 (2010).

93. Pang, J. C. et al. Geometric constraints on human brain function.
Nature 618, 566–574 (2023).

94. Deco, G., Jirsa, V., McIntosh, A. R., Sporns, O. & Kötter, R. Key role
of coupling, delay, and noise in resting brain fluctuations. Proc.
Natl Acad. Sci. USA 106, 10302–10307 (2009).

95. Deco, G., Jirsa, V. K. & McIntosh, A. R. Emerging concepts for the
dynamical organization of resting-state activity in the brain. Nat.
Rev. Neurosci. 12, 43–56 (2011).

96. Achterberg, J., Akarca, D., Strouse, D., Duncan, J. & Astle, D. E.
Spatially embedded recurrent neural networks reveal widespread
links between structural and functional neuroscience findings.
Nat. Mach. Intell. 5, 1369–1381 (2023).

97. Rigotti, M. et al. The importance of mixed selectivity in complex
cognitive tasks. Nature 497, 585–590 (2013).

98. Hellyer, P. J., Clopath, C., Kehagia, A. A., Turkheimer, F. E. & Leech,
R. From homeostasis to behavior: Balanced activity in an
exploration of embodied dynamic environmental-neural interac-
tion. PLoS Comput. Biol. 13, e1005721 (2017).

99. Hellyer, P. J., Jachs, B., Clopath, C. & Leech, R. Local inhibitory
plasticity tunes macroscopic brain dynamics and allows the
emergence of functional brain networks. NeuroImage 124,
85–95 (2016).

100. Falandays, J. B., Yoshimi, J., Warren, W. H. & Spivey, M. J. A
potential mechanism for Gibsonian resonance: Behavioral
entrainment emerges from local homeostasis in an unsupervised
reservoir network. Cogn. Neurodyn. 1–24 (2023).

101. Appeltant, L. et al. Information processing using a single dyna-
mical node as complex system. Nat. Commun. 2, 1–6 (2011).

102. Soriano, M. C. et al. Delay-based reservoir computing: noise
effects in a combined analog and digital implementation. IEEE
Trans. Neural Netw. Learn. Syst. 26, 388–393 (2014).

103. Li, J., Bai, K., Liu, L. & Yi, Y. A deep learning based approach for
analog hardware implementation of delayed feedback reservoir
computing system. In 2018 19th International Symposium on
Quality Electronic Design (ISQED), 308–313 (IEEE, 2018).

104. Zhao, C. et al. Novel spike based reservoir node design with high
performance spike delay loop. In Proceedings of the 3rd ACM
International Conference on Nanoscale Computing and Commu-
nication 1–5 (Association for ComputingMachinery, New York, NY,
United States, 2016).

105. Antonik, P. Application of FPGA to Real-Time Machine Learning:
Hardware Reservoir Computers and Software Image Processing
(Springer, 2018).

106. Alomar, M. L., Canals, V., Martínez-Moll, V. & Rosselló, J. L. Low-
cost hardware implementation of reservoir computers. In 2014
24th International Workshop on Power and Timing Modeling,
Optimization and Simulation (PATMOS), 1–5 (IEEE, 2014).

107. Antonik, Piotr. Application of FPGA to Real‐Time Machine Learn-
ing: Hardware Reservoir Computers and Software Image Proces-
sing. (Springer, 2018).

108. Wang, Q., Li, Y., Shao, B., Dey, S. & Li, P. Energy efficient parallel
neuromorphic architectures with approximate arithmetic on
FPGA. Neurocomputing 221, 146–158 (2017).

109. Vandoorne, K. et al. Toward optical signal processing using pho-
tonic reservoir computing. Opt. Express 16, 11182–11192 (2008).

110. Vandoorne, K. et al. Experimental demonstration of reservoir
computing on a silicon photonics chip. Nat. Commun. 5,
1–6 (2014).

111. Zhang, H. et al. Integrated photonic reservoir computing based on
hierarchical time-multiplexing structure. Opt. Express 22,
31356–31370 (2014).

Article https://doi.org/10.1038/s41467-024-44900-4

Nature Communications |          (2024) 15:656 12

https://doi.org/10.1007/978-3-030-61616-8_40
https://doi.org/10.1007/978-3-030-61616-8_40
https://doi.org/10.5281/zenodo.45133
https://doi.org/10.5281/zenodo.45133
https://doi.org/10.3389/conf.fninf.2011.08.00058
https://doi.org/10.3389/conf.fninf.2011.08.00058
https://github.com/fabridamicelli/echoes
https://github.com/fabridamicelli/echoes
https://doi.org/10.5281/zenodo.2872624


112. Katumba, A., Freiberger,M., Bienstman, P. &Dambre, J. Amultiple-
input strategy to efficient integrated photonic reservoir comput-
ing. Cogn. Comput. 9, 307–314 (2017).

113. Katumba, A. et al. Low-loss photonic reservoir computing with
multimode photonic integrated circuits. Sci. Rep. 8, 1–10 (2018).

114. Laporte, F., Katumba, A., Dambre, J. & Bienstman, P. Numerical
demonstration of neuromorphic computing with photonic crystal
cavities. Opt. Express 26, 7955–7964 (2018).

115. Taniguchi, T. et al. Reservoir computing based on spintronics
technology. In Reservoir Computing: Theory, Physical Imple-
mentations, and Applications 331–360 (Springer, Singa-
pore, 2021).

116. Riou, M. et al. Reservoir computing leveraging the transient non-
linear dynamics of spin-torque nano-oscillators. In Reservoir
Computing: Theory, Physical Implementations, and Applications
307–329 (Springer, Singapore, 2021).

117. Nomura, H., Kubota, H. & Suzuki, Y. Reservoir computing with
dipole-coupled nanomagnets. In Reservoir Computing: Theory,
Physical Implementations, and Applications 361–374 (Springer,
Singapore, 2021).

118. Fujii, K. & Nakajima, K. Quantum reservoir computing: a reservoir
approach toward quantum machine learning on near-term quan-
tum devices. In Reservoir Computing: Theory, Physical Imple-
mentations, and Applications 423–450 (Springer,
Singapore, 2021).

119. Negoro, M., Mitarai, K., Nakajima, K. & Fujii, K. Toward nmr quan-
tum reservoir computing. In Reservoir Computing: Theory, Physi-
cal Implementations, and Applications 451–458 (Springer,
Singapore, 2021).

120. Yang, X., Chen, W. & Wang, F. Z. Investigations of the staircase
memristor model and applications of memristor-based local
connections. Analog Integr. Circuits Signal Process. 87,
263–273 (2016).

121. Bennett, C. H., Querlioz, D. & Klein, J.-O. Spatio-temporal learning
with arrays of analog nanosynapses. In 2017 IEEE/ACM Interna-
tional Symposium on Nanoscale Architectures (NANOARCH)
125–130 (IEEE, 2017).

122. Kulkarni, M. S. & Teuscher, C. Memristor-based reservoir com-
puting. In 2012 IEEE/ACM international symposium on nanoscale
architectures (NANOARCH) 226–232 (IEEE, 2012).

123. Du, C. et al. Reservoir computing using dynamic memristors for
temporal information processing. Nat. Commun. 8, 1–10 (2017).

124. Sillin, H. O. et al. A theoretical and experimental study of neuro-
morphic atomic switch networks for reservoir computing. Nano-
technology 24, 384004 (2013).

125. Kendall, J. D., Nino, J. C. & Suárez, L. E. Deep learning in bipartite
memristive networks. US Patent App. 15/985,212 (2008).

126. Suárez, L. E., Kendall, J. D. & Nino, J. C. Evaluation of the compu-
tational capabilities of a memristive random network (mn3) under
the context of reservoir computing. Neural Netw. 106,
223–236 (2018).

127. Cai, H. et al. Brain organoid reservoir computing for artificial
intelligence. Nat. Electron. 6, 1032–1039 (2023).

128. Nakajima, K. et al. A soft body as a reservoir: case studies in a
dynamic model of octopus-inspired soft robotic arm. Front.
Comput. Neurosci. 7, 91 (2013).

129. Obien, M. E. J., Deligkaris, K., Bullmann, T., Bakkum, D. J. & Frey, U.
Revealing neuronal function through microelectrode array
recordings. Front. Neurosci. 8, 423 (2015).

130. Ortman, R. L., Venayagamoorthy, K. & Potter, S. M. Input separ-
ability in living liquid state machines. In Adaptive and Natural
Computing Algorithms: 10th International Conference, ICANNGA
2011, Ljubljana, Slovenia, April 14-16, 2011, Proceedings, Part I 10
220–229 (Springer, Berlin, 2011).

131. Dockendorf, K. P., Park, I., He, P., Príncipe, J. C. & DeMarse, T. B.
Liquid state machines and cultured cortical networks: the
separation property. Biosystems 95, 90–97 (2009).

132. Jones, B., Stekel, D., Rowe, J. & Fernando, C. Is there a liquid state
machine in the bacterium Escherichia coli? In 2007 IEEE Sympo-
sium on Artificial Life,187–191 (IEEE, 2007).

133. Didovyk, A. et al. Distributed classifier based on genetically engi-
neered bacterial cell cultures. ACS Synth. Biol. 4, 72–82 (2015).

134. Hauser, H. Physical reservoir computing in robotics. In Reservoir
Computing: Theory, Physical Implementations, and Applications
169–190 (Springer, Singapore, 2021).

135. Dion, G., Oudrhiri, A. I.-E., Barazani, B., Tessier-Poirier, A. &
Sylvestre, J. Reservoir computing in MEMS. In Reservoir
Computing: Theory, Physical Implementations, and Applications
191–217 (Springer, Singapore, 2021).

136. Caluwaerts, K., D’Haene, M., Verstraeten, D. & Schrauwen, B.
Locomotion without a brain: physical reservoir computing in
tensegrity structures. Artif. Life 19, 35–66 (2013).

137. Natschläger, T., Maass, W. &Markram, H. The" liquid computer": a
novel strategy for real-timecomputingon time series. Telematik8,
39–43 (2002).

138. Nakajima, K. & Aoyagi, T. Thememory capacity of a physical liquid
state machine. IEICE Tech. Rep. 115, 109–112 (2015).

139. Bhovad, P. & Li, S. Physical reservoir computing with origami and
its application to robotic crawling. Sci. Rep. 11, 13002 (2021).

140. Duan, X.-Y. et al. Embedding theory of reservoir computing and
reducing reservoir network using time delays. Phys. Rev. Res. 5,
L022041 (2023).

141. Sakemi, Y., Morino, K., Leleu, T. & Aihara, K. Model-size reduction
for reservoir computing by concatenating internal states through
time. Sci. Rep. 10, 21794 (2020).

142. Larger, L. et al. High-speed photonic reservoir computing using a
time-delay-based architecture: Million words per second classifi-
cation. Phys. Rev. X 7, 011015 (2017).

143. Bakker, R., Wachtler, T. & Diesmann, M. Cocomac 2.0 and the
future of tract-tracing databases. Front. Neuroinform. 6, 30
(2012).

144. Suárez, L. E. The conn2res toolbox [data set]. Zenodo (2023).
145. Suárez, L. E. et al. Connectome-based reservoir computing with

the conn2res toolbox (2023). https://doi.org/10.5281/zenodo.
10437157.

146. Werbos, P. J. Backpropagation through time:what it does and how
to do it. Proc. IEEE 78, 1550–1560 (1990).

Acknowledgements
We thank Bertha Vazquez-Rodriguez, Andrea Luppi, RossMarkello, Golia
Shafiei, Vincent Bazinet, Justine Hansen, Zhen-Qi Liu, Eric Ceballos,
Moohebat Pourmajidian and Asa Farahani for insightful comments on
the manuscript. BM acknowledges support from the Natural Sciences
and Engineering Research Council of Canada (NSERC Discovery Grant
RGPIN #017-04265), from the Brain Canada Future Leaders Fund and the
Canadian Institutes of Health Research (CIHR). GL acknowledges sup-
port from NSERC (Discovery Grant: RGPIN-2018-04821), CIFAR (Canada
AI Chair), and a Canada Research Chair in Neural Computations and
Interfacing (CIHR, tier 2). PEV acknowledges support from MQ: Trans-
forming Mental Health (Grant No. MQF17-24). All research from the
Department of Psychiatry at the University of Cambridge is made pos-
sible by the National Institute for Health and Care Research Cambridge
Biomedical Research Centre and National Institute for Health and Care
Research East of England Applied Research Centre. LES acknowledges
support from the Fonds de Recherche du Québec - Nature et Technol-
ogies (FRQNT) Strategic Clusters Program (2020-RS4-265502 - Centre
UNIQUE - Union Neurosciences and Artificial Intelligence - Quebec) and
the Fonds de Recherche du Québec - Nature et Technologies (FRQNT).

Article https://doi.org/10.1038/s41467-024-44900-4

Nature Communications |          (2024) 15:656 13

https://doi.org/10.5281/zenodo.10437157
https://doi.org/10.5281/zenodo.10437157


Author contributions
L.E.S., A.M., F.M., and B.M. conceived the toolbox. L.E.S. and B.M. wrote
the manuscript, with valuable revision from P.E.V., A.M. and G.L. L.E.S.
and A.M. developed the toolboxwith help from K.M., M.L., and F.M. B.M.
was the project administrator.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41467-024-44900-4.

Correspondence and requests for materials should be addressed to
Bratislav Misic.

Peer review information Nature Communications thanks Robert Leech,
and the other, anonymous, reviewer(s) for their contribution to the peer
review of this work. A peer review file is available.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jur-
isdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if
changes were made. The images or other third party material in this
article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2024

Article https://doi.org/10.1038/s41467-024-44900-4

Nature Communications |          (2024) 15:656 14

https://doi.org/10.1038/s41467-024-44900-4
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Connectome-based reservoir computing with the conn2res toolbox
	Outline placeholder
	Building a reservoir computer

	RESULTS
	The conn2res toolbox
	Tutorial
	Example 1: toolbox components
	Example 2: applications

	Discussion
	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




