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Abstract 
Many genes are linked to psychiatric disorders, but genome-wide association studies 
(GWAS) and differential gene expression (DGE) analyses in post-mortem brain tissue 
often implicate distinct gene sets. This disconnect impedes therapeutic development, 
which relies on integrating genetic and genomic insights. We address this issue using 
a novel multivariate technique that reduces DGE bias by leveraging gene co-
expression networks and controlling for confounds such as drug exposure. Deep RNA 
sequencing was performed in bulk post-mortem sgACC from individuals with bipolar 
disorder (BD; N=35), major depression (MDD; N=51), schizophrenia (SCZ; N=44), and 
controls (N=55). Toxicology data dimensionality was reduced using multiple 
correspondence analysis; case-control gene expression was then analyzed using 1) 
traditional DGE and 2) group regularized canonical correlation analysis (GRCCA) – a 
multivariate regression method that accounts for feature interdependence. Gene set 
enrichment analyses compared results with established neuropsychiatric risk genes, 
gene ontology pathways, and cell type enrichments. GRCCA revealed a significant 
association with SCZ (Pperm=0.001; no significant BD or MDD association), and the 
resulting gene weight vector correlated with DGE SCZ-control t-statistics (R=0.53; 
P<0.05). Both methods indicated down-regulation of immune and microglial genes and 
upregulation of ion transport and excitatory neuron genes. However, GRCCA - at both 
the gene and transcript level - showed stronger enrichments (FDR<0.05). Notably, 
GRCCA results were enriched for SCZ GWAS-implicated genes (FDR<0.05), while 
DGE results were not. These findings identify a SCZ-specific sgACC gene expression 
pattern that highlights SCZ risk genes and implicates neuro-immune pathways, thus 
demonstrating the utility of multivariate approaches to integrate genetic and genomic 
signals. 
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Introduction 
 
Major psychiatric disorders, including schizophrenia (SCZ), bipolar disorder (BD), and 
major depressive disorder (MDD), are highly heritable1, but translating this heritability 
across genomic levels and into effective treatments remains a critical challenge. 
Genome-wide association studies (GWAS)2 have identified genetic variants robustly 
associated with psychiatric conditions 1,3–5, while case-control differential gene 
expression (DGE) and weighted gene co-expression network analyses (WGCNA) 6 
have revealed distinct transcriptomic profiles across these disorders 7–9. Despite these 
advances, gene sets implicated by DGE studies often fail to align with one another or 
with GWAS findings 9–11; leaving the molecular consequences of genetic variation 
unresolved. This limitation complicates efforts to uncover the molecular underpinnings 
of psychopathology and develop targeted treatments. 
 
Several factors likely contribute to this lack of agreement between genetic and 
genomic findings 12. Chief among them is the inherent complexity and high 
dimensionality of genomic data, which encompasses thousands of interrelated 
features that collectively shape psychopathology. Emerging evidence also highlights 
the role of alternative RNA splicing, rather than gene expression levels alone, as a key 
mechanism linking genetic variation to disease 13–17. Furthermore, postmortem gene 
expression is confounded by environmental factors, including medication and 
recreational drug use 12,18,19. Finally, transcriptomic expression patterns are cell-type 
specific at a granular level and region-specific at a coarser level 12,17,19–22, but key 
studies focus specifically on the prefrontal cortex, particularly the dorsolateral area 
(dlPFC) 7,17,23. These challenges create a complex genomic space that requires 
thoughtful statistical approaches to derive meaningful insights.  
 
Canonical correlation analysis (CCA) has emerged as a powerful analytic tool for 
addressing data complexity and high dimensionality in the neuroimaging sphere of 
biological psychiatry 24,25. CCA is a statistical method that identifies associations 
between two multivariate datasets—such as gene expression and sample 
covariates—by finding linear combinations of the variables that are maximally 
correlated 25,26. In recent years, CCA has been applied to link brain imaging-derived 
features in specific brain regions with behavioral measures, psychiatric symptoms, and 
gene expression patterns 26. Group regularized CCA (GRCCA), a recent advancement 
of CCA, takes into account non-independence of features (for instance, brain regions 
functioning in networks or gene co-expression) and has been shown to outperform 
traditional CCA in cross-validation assessments 27. 
 
Here, we apply GRCCA to gene expression data derived from post-mortem brain 
tissue obtained from donors with one of three major psychiatric disorders: SCZ, BD, 
and MDD. The novel analytical framework we employ aims to extract new insights 
from existing bulk RNA sequencing data by addressing key limitations of traditional 
DGE and WGCNA methods. GRCCA distinctly quantifies small, distributed effects 
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across the genome while accounting for interdependence among features (i.e., gene 
co-expression). As a multivariate approach, it also evaluates the relative contributions 
of environmental factors—specifically medication and recreational drug use—to 
observed expression patterns. We apply this method to a deeply sequenced 
transcriptomic dataset from the subgenual anterior cingulate cortex (sgACC), a limbic 
region central to mood regulation and underexplored in psychosis research 8. The 
depth of sequencing in this bulk dataset enables us to assess the role of low-
expressed genes and alternative transcripts by extending GRCCA to transcript-level 
analysis. We validate the utility of GRCCA by comparing its results to those from 
traditional methods (DGE and WGCNA) and evaluating alignment with published risk 
gene lists. Collectively, our findings demonstrate the utility of multivariate approaches 
in the transcriptomic space to extract new insights from bulk RNAseq data. 
 

Methods and Materials 
 
Samples and RNA sequencing 
Analyses included 185 samples (55 Controls, 44 SCZ, 35 BD, and 51 MDD) described 
by Akula et al8 (clinical information is available in Table S1). All samples in this study 
were collected with permission of the next-of-kin under CNS IRB protocols 90M0142 
and 17M-N073 or approved by the NIMH Human Brain Collection Core Oversight 
Committee. Libraries were prepared from total RNA extracted from frozen dissections 
of sgACC using the RiboZero protocol. Paired end sequencing was performed on 
Illumina HiSeq 2500. Mapping and quality control were previously described by Akula 
et al 8; reads were mapped to human genome build 38 using Hisat2 and gene and 
transcript counts were obtained using StringTie 28. Here, ‘transcripts’ refers to 
expressed alternatively spliced gene variants. 
 
Raw count preprocessing 
Genes and transcripts with >= 10 counts across at least 80% of samples were 
considered in the downstream analysis, resulting in 18,677 genes and 72,403 known 
transcripts for subsequent analyses. To select informative features and reduce 
dimensionality 29, further filtering was performed on the transcript data. Because mean 
expression is strongly correlated with variance (R=0.97; Fig S1A), filtering transcripts 
based on variance would disproportionately exclude those with low expression levels 
(i.e., rare transcripts). In contrast, the coefficient of variation (CV) exhibits a much 
weaker correlation with mean expression (R=0.15; Fig S1B). Therefore, CV (CV cutoff 
~= 0.36) was used to identify transcripts with minimal variation across samples relative 
to their mean expression (Fig S1C). A total of 54,302 transcripts were included in 
downstream analyses. After filtering, gene and transcript counts were transformed 
using variance stabilizing transformation (VST) from DESeq2 package 30. 
 
For covariate correction, both known covariates (N=39 total; N=11 technical; N=17 
toxicological; Table S1) and technical variation due to transcript degradation were 
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considered. Quality surrogate variable analysis (qSVA) was run on VST data to 
account for transcript degradation 31. Although the qSVA transcript degradation matrix 
was originally derived from the dlPFC, the authors demonstrated the generalizability 
of the method to other brain regions 31. A quality surrogate variable (qSV) was 
considered significant from the transformed gene counts if it 1) explained greater than 
2% of the variance in transcript degradation data (Fig S2A) or 2) correlated with known 
covariates (Fig S2B). With these criteria, qSVs 1-7 and 9 were included in the 
regression. After qSV regression, known covariates that still contributed to variance in 
the normalized and regressed expression data were identified as those that 
significantly (FDR < 0.05) correlated with significant (>2% variance explained) gene 
expression principal components. Age at death and GC percent (a quality control 
parameter indicating the percentage of RNA bases that are either guanine or cytosine 
32) met these criteria and were included; sex at birth and race were also included to 
avoid these variables contributing to module assignments. Together, the following 
covariates were regressed from the VST counts: qSV1 + qSV2 + qSV3 + qSV4 + qSV5 
+ qSV6 + qSV7 + qSV9 + sex_at_birth + race + age_at_death + gc_percent. Following 
these corrections, no significant principal component (PC; > 2% variance explained) 
was correlated with a technical covariate or significant qSV (Fig S2C). The residuals 
following covariate correction were used for downstream analyses. 
 
Toxicology multiple correspondence analysis 
Seventeen recreational drugs and medications were reported as present, absent, or 
unknown in the postmortem data based on toxicology reports (Table S1; Fig S3A). 
Given the sample size (N=185), the dimensionality of toxicology covariate data was 
reduced through multiple correspondence analysis (MCA), a method that represents 
the underlying structure of categorical data 33, using the MASS R package (version 
7.3-60.2) 34. If toxicology data for a given compound was unknown for a given sample, 
it was assumed not present. The first 8 dimensions of this analysis were selected to 
represent the toxicology covariate data in subsequent analyses, as each individually 
explained greater than 5% of variation and collectively they explained the majority of 
variance (>75%; Fig S3B). Compound loadings on each MCA dimension are shown 
in Fig S3C, while known covariate correlations with each MCA dimension can be found 
in Fig S3D. 
 
DGE analysis 
DGE on this dataset was previously run 8; however, because raw count preprocessing 
was updated in the current work, we reran DGE for comparability with WGCNA and 
GRCCA results. DGE was run on the normalized and corrected expression data using 
DESeq2 30 version 1.44.0. Toxicology MCA dimensions 1-8 were included as 
covariates in the model to facilitate direct comparisons with GRCCA results. 
 
Generation of gene and transcript co-expression modules 
The WGCNA R package 35 was used to construct gene and transcript co-expression 
modules. The resulting gene and transcript modules reflect shared underlying 
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biological functionality and/or transcriptional regulation 36. In this framework, module 
0, termed the ‘gray’ module, corresponds to the set of genes which have not been 
clustered in any module. 
 
Normalized and corrected expression data for both case and control samples were 
used to generate co-expression modules. Modules were assigned based on package 
author recommendations, module size and number, including the gray module, and 
biological enrichments (Supplement; Fig S4; Fig S5). At the gene level, a soft-
thresholding power of 3, a minimum module size of 40, and a tree cut height of 0.980 
were used, resulting in 23 co-expression modules (Fig S4, Fig S5A). For the transcript 
expression data, a soft-thresholding power of 2, a minimum module size of 35, and a 
tree cut height of 0.988 were used, resulting in 40 transcript-level modules. 
 
Characterizing the enrichment of co-expression modules 
Biological relevance of gene and transcript modules was assessed using 2 distinct 
enrichment tests: 
 
Functional enrichment of each of the modules (including biological process (BP), 
cellular component (CC), and molecular function (MF)) was assessed using the 
enrichGO function from the R package clusterProfiler 37. To perform this analysis on 
transcript-level results, transcripts were mapped to genes using the biomaRt package 
in R version 2.60.1 38. To summarize the functional enrichment results, topic modeling 
was employed on all significant gene ontology (GO) terms across all modules 
39(Supplement; Fig S5B). 
 
Cell-type enrichment of each module was calculated as the hypergeometric overlap 
between the genes in a module and genes associated with each cell type, as 
annotated by Lake et al 40 and grouped into seven broader cell-type classes by Seidlitz 
et al 41 (Fig S5C). Transcripts were mapped to genes to perform this analysis at the 
transcript level. 
 
Developmental trajectory analysis 
To assess the co-expression patterns of genes through development, we determined 
the average developmental trajectory for each module. Neocortical gene expression 
values across different windows of life from 421 samples from 41 human brains were 
accessed from PsychENCODE data 42. For each module, genes were averaged 
across samples at each time window and plotted as a smooth curve to visualize 
periods of average higher and lower expression (Fig S5D). Transcripts were mapped 
to gene level to perform this analysis at the transcript level.  
 
Canonical correlation analysis (CCA) 
CCA is a technique that determines the linear association between two multivariate 
data matrices from different modalities 25. Here, we used a custom version of the 
CCA/PLS toolkit 
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[https://github.com/rlsmith1/sgACC_transcriptomics_analyses/tree/main/RCCA_toolk
it/cca_pls_toolkit_final] 26, with the X matrix containing samples-by-expression data (N 
= 18677 genes; N = 54302 transcripts), and the Y matrix samples-by-covariates, 
including psychiatric diagnosis and 8 toxicology latent dimensions (Fig S4). 
 
The output of CCA is a vector of feature (gene/transcript) weights (wx) and a vector of 
covariate weights (wy), which are the coefficients used to construct the X and Y latent 
variables (LVx=X⋅wx and LVy=Y⋅wy, respectively) (Fig S6; Table 1). These weights are 
optimized by the CCA algorithm to maximize the correlation between the latent 
variables. To assess the consistency of these weights across 1000 bootstraps, a Z-
score was calculated for each gene/transcript and covariate weight as the actual 
weight divided by its standard deviation. To estimate feature contribution to the 
identified association, we used structure correlations, defined as the Pearson 
correlation between each feature (i.e., matrix column) and its corresponding latent 
variable (cor(X, LVx) and cor(Y, LVy), respectively; Table 1) 26. In this work, dual criteria 
were applied to determine feature significance: (i) |Z| >= 2, to ensure the weight 
remained consistently non-zero across bootstraps, and (ii) structure correlation (rx) 
FDR < 0.05, to confirm the variable’s correlation with the X-Y associative effect. 
 
Regularized CCA (RCCA): In analyses where the sample size is smaller than the 
number of variables, a standard CCA model is ill-posed (i.e., it doesn’t have a unique 
solution). Regularization (i.e., treating all canonical coefficients equally and shrinking 
them to zero) and dimensionality reduction successfully address this issue 26. Thus, 
we (1) included a regularization parameter for the X-matrix defined by the number of 
features (lambda = 1-1/(N features)), and (2) optimized the amount of variance in the 
X matrix that was incorporated in the model (search space from 0.1 to 1 by increments 
of 0.1) using a permutation-based approach to avoid overfitting43. 
 
Group RCCA (GRCCA): A limitation of the standard RCCA approach is that it ignores 
underlying data structure and treats all features equally 27. However, in the case of 
transcriptomics, this is an incorrect assumption as genes and transcripts are co-
expressed. Thus, it is further useful to regularize at the group level, in addition to the 
feature level. Here, we use WGCNA module assignment as the grouping vector. The 
group-level regularization parameter was set to mu = 0.1. The feature-level 
regularization parameter and the variance explained search space were consistent 
between RCCA and GRCCA algorithms to maximize comparability (refer to the 
Supplement for RCCA results). See Table 1 for (G)RCCA inputs and outputs. 
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Table 1. (G)RCCA model inputs and outputs 

Inputs 

Data X Y 

*Variance explained 0.1:1:0.1  

†Group vector WGCNA module - 

†Group hyperparameter (mu) 0.1 - 

Feature hyperparameter (lambda) 1-1/n features - 

Outputs 

Weight wx wy 

Latent variable LVx = X⋅wx LVy = Y⋅wy 

Structure correlation rx = cor(X, LVx) ry = cor(Y, LVy) 

*Can be value or search space 
†GRCCA only 

 
Gene set validation and characterization (gene set enrichment analyses; 
GSEA) 
To test the biological validity of GRCCA and compare it with DGE, analysis results 
were benchmarked using published gene lists and functional enrichment tests. GSEA 
was run using the R package fgsea (version 1.30.0)44 to determine the rank-based 
enrichments of analysis result distributions of the following: (1) neuropsychiatric risk 
genes (SCZ, BD, MDD, and Autism Spectrum Disorder (ASD); Supplement), (2) cell 
type 40, and (3) GO functional pathways (including BP, CC, and MF ontologies). Per 
GSEA author recommendations, the full vectors of gene DGE t-statistics and structure 
correlations were used as input (i.e., no filtering was applied). 
 
In all statistical and enrichment analyses, P values were corrected for multiple 
comparisons using the Benjamini-Hochberg (BH) method. 
 
Code for all analyses is available at 
https://github.com/rlsmith1/sgACC_transcriptomics_analyses.git. An overview of the 
study analysis pipeline is available in Figure 1. 
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Results 
 
GRCCA identified a robust link between gene expression and schizophrenia 
The GRCCA model was optimized by incorporating 70% of gene expression variance, 
resulting in a significant X-Y latent variable correlation of 0.585 with P=0.001 across 
1000 permutations (Fig 2A; Table S2A). One latent variable was significant and is 
reported here. Schizophrenia was the only covariate significantly associated with this 
latent variable, with a Z-score of 3.50 (Fig S7) and a structure correlation ry=0.921 
(FDR<0.001; Fig 2B; Table S2B; see Supplement and Fig S6 for an explanation of 
CCA terminology and design). Thus, the covariate association with gene expression 
in this latent variable was primarily driven by SCZ. 
 
 

Figure 1. A schematic overview of the analysis pipeline. Abbreviations: SCZ = schizophrenia; 
BD = bipolar disorder; MDD = major depressive disorder; DGE = Differential gene expression 
(analysis); WGCNA = weighted gene co-expression network analysis; GRCCA = group regularized 
canonical correlation analysis; GSEA = gene set enrichment analysis. 
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Figure 2. GRCCA identified a linear association between SCZ and gene expression. (A) 
GRCCA model P values by percent variance explained in the X matrix (gene expression data). Point 
size indicates X-Y latent variable correlation, while the color indicates -log10(P-value). As P values 
were calculated across 1000 bootstraps, the minimum P value possible is 0.001 (-log10(P) = 3; 
indicated by diamond). (B) Covariate structure correlations, calculated as the Pearson correlation 
between covariate value across samples and the Y latent variable (U). The x-axis indicates structure 
correlation (ry), while the y-axis represents each covariate, ordered by increasing structure 
correlation. Point color also indicates structure correlation, while point size represents correlation 
significance -log10(FDR). (C) The top 20 genes subset by the absolute value of their structure 
correlation (rx). Each gene is represented on the y-axis, and their respective structure correlations 
are indicated by the x-axis and point color. Point size represents correlation significance -
log10(FDR). (D) Expression values across diagnostic groups for the genes with the highest (BCL7A, 
left) and lowest (CFAP46, right) structure correlations. Each point is a sample, colored and ordered 
on the x-axis by diagnostic group. The y-axis shows the normalized & correlated expression value 
for that sample. The box and whiskers show the distribution of values for each diagnostic group. 
Neither gene was differentially expressed per the current study’s DGE analysis (p BCL7A = 0.118; 
t BCL7A = 1.56; p CFAP46 = 0.065; t CFAP46 = -1.85). (E) The correlation between mean gene 
expression and structure correlation, faceted by diagnostic group. Each point is a gene; its position 
on the x-axis indicates the mean expression value across samples within the diagnostic group, while 
the y-axis represents its structure correlation (rx). The line shows the line of best fit, colored by 
diagnostic group, and inset text indicates the correlation within each diagnostic group. 
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According to the same criteria (FDR<0.05 and |Z|>=2), 1,211 genes were significantly 
associated with the latent variable correlated with SCZ (Fig S8; Table S2C). The top 
20 by |rx| are shown in Fig 2C. The gene with the highest structure correlation, BCL7A 
(rx=0.56; also a SCZ risk gene), showed higher expression in SCZ compared to 
controls (Fig 2D, left), but was not significantly differentially expressed according to 
standard DGE analysis (P=0.12; L2FC=0.01). Similarly, the gene with the lowest 
structure correlation, CFAP46 (rx=-0.52), demonstrated lower expression in SCZ 
compared to controls (Fig 2D, right), but was not differentially expressed (P=0.06; 
L2FC=-0.02). This pattern holds across genes: genes with higher expression levels in 
SCZ have positive rx and vice versa for lower expression and negative rx (R=0.55; 
P<0.001; Fig 2E); while the reverse is true for controls (higher expression levels are 
associated with lower or more negative rx; R=-0.48; P<0.001). There are no significant 
relationships between gene expression in BD and MDD and structure correlation, 
providing further evidence that the association we detected was driven by SCZ. 
 
SCZ risk genes were specifically and significantly enriched in the GRCCA gene 
structure correlation distribution 
To test the alignment of GRCCA results with genetic variants, we tested the structure 
correlation distribution for overrepresentation of known SCZ risk genes based on 
common or rare variant association studies 3,45. To assess specificity to SCZ, we also  
ran the same enrichment analysis using known risk genes for autism spectrum 
disorder (ASD) 46, MDD 5, and BD 4 (all based on common variant associations). The 
positive end of the structure correlation distribution was significantly enriched for SCZ 
common-variant associated genes (both the broad set normalized enrichment score, 
NES=1.57; FDR=1.1*10-4) and the prioritized gene list (NES=1.54; FDR=6.5*10-3); Fig 
3A; Table S3A). SCZ rare variant-associated genes were also positively, though not 
significantly, enriched within the structure correlation distribution (NES = 1.36; FDR = 
0.18). In contrast, risk genes associated with ASD, BD, and MDD were not enriched 
in either end of the structure correlation distribution (ASD: FDR=0.45, NES=1.00; BD: 
FDR=0.37, NES=1.08; MDD: FDR=0.10, NES=1.26). Taken together, these results 
suggest that genes with positive structure correlations are significantly enriched for 
SCZ risk genes, and that this signal is specific to SCZ and not other psychiatric 
disorders. 
 

the y-axis represents its structure correlation (rx). The line shows the line of best fit, colored by 
diagnostic group, and inset text indicates the correlation within each diagnostic group. 
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Figure 3. GRCCA identified a neuro-immune gradient of gene expression associated with 
SCZ. (A) Enrichment of SCZ-control DEGs for risk genes identified in psychiatry GWAS. Top: Tile 
color and text shows the normalized enrichment score (NES) for each association; significant 
enrichments (FDR < 0.05) are outlined in black. The top row shows SCZ risk genes (broad fine-
mapped common variant-associated genes 3 (N = 628; FDR = 1.1*10-4); prioritized common variants 
3 (N = 120; FDR = 6.5*10-3;); rare variants 45 (N = 10;  FDR = 0.18)), while the bottom row shows 
risk genes identified through GWAS of other psychiatric disorders: (Autism Spectrum Disorder (ASD) 
common variants 46 (N = 567; FDR = 0.45); BD common variants 4 (N = 162; FDR = 0.37); MDD 
common variants 5 (N = 339; FDR = 0.10)). Bottom: Position of SCZ common variant-associated 
risk genes (broad set) in the GRCCA structure correlation distribution. The curve shows the density 
distribution of the structure correlation (rx) of DEGs in the current study, while the points show the 
position of SCZ risk genes in the distribution. Points are colored by structure correlation, where red 
indicates positive correlation with SCZ and blue indicates negative correlation with SCZ. Significant 
GRCCA genes (|Z| >= 2; rx FDR < 0.05) are outlined in black, while top significant risk genes by |rx | 
are labeled. (B) Cell type enrichment of GRCCA results by gene set enrichment analysis (GSEA). 
The y-axis shows each cell type, while the x-axis and bar color indicate the GSEA normalized 
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The distribution of gene structure correlations represented a developmentally 
sensitive, polarized axis of neuron-immune enrichments 
We then assessed the biological enrichments of the vector of gene structure 
correlations (rx) using GSEA. Cell-type GSEA revealed an overrepresentation of genes 
expressed in excitatory neurons (NES=2.89; FDR<0.001) and inhibitory neurons 
(NES=1.98; FDR<0.001) at the positive end of the structure correlation distribution 
(i.e., genes that tended to be upregulated in SCZ) (Fig 3B; Table S3B). In contrast, 
the negative end of the distribution was enriched for genes expressed in microglia 
(NES=-3.39; FDR<0.001) and astrocytes (NES=-1.95; FDR<0.001), revealing an 
enrichment pattern with neurons at one pole and glia at the other pole. Functional 
pathway GSEA aligned with these cell type results: The positive end of the structure 
correlation distribution contained genes associated with synaptic signaling, 
ubiquitination, and vesicular transport, typical of neurons. Among genes with negative 
structure correlations, pathways corresponding to immune response and cilium 
movement/assembly–typical glial functions–were strongly enriched (Fig 3D; Table 
S3C). These biological enrichments suggest that the GRCCA structure correlation 
distribution represents a synaptic-immune gradient of expression that is differentially 
regulated in SCZ. 
 

common variants 46 (N = 567; FDR = 0.45); BD common variants 4 (N = 162; FDR = 0.37); MDD 
common variants 5 (N = 339; FDR = 0.10)). Bottom: Position of SCZ common variant-associated 
risk genes (broad set) in the GRCCA structure correlation distribution. The curve shows the density 
distribution of the structure correlation (rx) of DEGs in the current study, while the points show the 
position of SCZ risk genes in the distribution. Points are colored by structure correlation, where red 
indicates positive correlation with SCZ and blue indicates negative correlation with SCZ. Significant 
GRCCA genes (|Z| >= 2; rx FDR < 0.05) are outlined in black, while top significant risk genes by |rx | 
are labeled. (B) Cell type enrichment of GRCCA results by gene set enrichment analysis (GSEA). 
The y-axis shows each cell type, while the x-axis and bar color indicate the GSEA normalized 
enrichment score (NES). A negative NES (blue) indicates that genes associated with the cell type 
(per 40) are enriched at the negative end of the structure correlation (rx) distribution, while a positive 
NES indicates the same for the positive end. Significance is indcated by asterisks as follows: * FDR 
< 0.05; ** FDR < 0.01; *** FDR < 0.001. (C) Developmental trajectories of genes in each GRCCA 
decile per the PsychENCODE data 42. The x-axis shows the developmental window, split by post-
conception week (PCW) and post-natal year (PY). The y-axis shows the median PsychENCODE 
expression value for samples from the frontal cortex. Each line represents a GRCCA decile (binned 
according to structure correlation (rx)); with red representing the top decile (i.e., most positive 
structure correlations) and blue representing the bottom decile (i.e., most negative structure 
correlations). (D) Gene ontology gene set enrichment analysis (GSEA) results for the GRCCA 
structure correlation (rx) distribution. Genes were ranked by rx, and GSEA determined GO pathway 
enrichments at either end of the distribution (positive or negative). Each facet represents a distinct 
GO ontology (BP = biological process, CC = cellular component, MF = molecular function). The x-
axis shows the -log10(FDR) of the pathway, while the y-axis indicates its NES, in which a positive 
value indicates the pathway was significant in genes with a positive structure correlation, while a 
negative value indicates the pathway was significant in genes with a negative structure correlation. 
Points are colored by NES and sized by the number of genes in the pathway. 
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Based on convergent evidence that SCZ is a neurodevelopmental disorder 47, we 
hypothesized that the genes identified through this analysis are developmentally 
sensitive. To test this, we split the vector of structure correlations into deciles, with 
genes at the positive end in decile 1 and genes at the negative end in decile 10. We 
then summarized the normative developmental curves of each decile using 
PsychENCODE neocortical data 42. Genes in the first decile had high levels of 
expression that increased through development, with a local maximum right before 
birth (Fig 3C). Genes in the tenth decile had low levels of expression and peak 
expression immediately after birth. In contrast, genes in deciles 2-9 showed less 
striking levels or patterns of expression through development. Together, these results 
suggest that genes that are most strongly associated with SCZ (either positively or 
negatively) show dynamic developmental patterns of expression, especially around 
time of birth. 
 
Differential gene expression (DGE) analysis results demonstrated weaker 
biological enrichments and did not align with SCZ risk genes 
To compare our novel use of GRCCA with current state-of-the-art methods, we ran 
standard differential gene expression analysis on the preprocessed expression data. 
1,690 genes were identified as differentially expressed between SCZ and controls at 
P<0.05 (DEGs; Fig 4A; Fig 4B; Table S4; five DEGs at FDR<0.05). Of these, 433 
were also identified as DEGs (P<0.05) in a previous differential expression analysis of 
these data (total N DEGs=1373) 8 (Fig S9A; hypergeometric P < 0.001; odds ratio = 
2.30), indicating statistical preservation across studies with distinct preprocessing 
pipelines. Furthermore, the differential expression t-statistic across genes was 
significantly correlated with the t-statistics reported in Akula et al 8 (Fig S9B; R=0.61; 
P<0.001). DGE effect size was also correlated with GRCCA gene structure correlation 
(rx; R=0.53; P<0.001; Fig 4C; Fig S9A), demonstrating that GRCCA structure 
correlation is indicative, but independent, of up- or down-regulation per DGE analysis. 
 
DGE analysis resulted in a vector of case-control t-statistics (in which a positive t-
statistic indicates upregulation in SCZ) across genes. To assess DGE alignment with 
genetic variation identified in psychiatric disorders, we tested the SCZ-control t-
statistic distribution for SCZ, ASD, MDD, and BD risk gene list enrichment (Fig 4D; 
Table S5C). Though all risk gene lists tended to cluster at the positive end of the effect 
size distribution, none of the enrichments were significant (all P>0.05). The strongest 
enrichment was for MDD, which showed a positively skewed but non-significant 
clustering of risk genes in the SCZ-control effect size distribution (NES=1.37; 
FDR=0.07; Fig 4F; Table S5C). Thus, unlike GRCCA, DGE failed to align with SCZ 
genetic variation. 
 
Finally, to directly compare biological information contained across analysis results, 
we ran the same enrichment tests on this DGE vector as with the GRCCA structure 
correlations. Functional pathway GSEA demonstrated that, as with GRCCA, the 
negative end of the distribution (i.e., genes downregulated in SCZ compared to 
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controls) was strongly enriched for immune processes (Fig 4E; Table S5B). The 
positive end of the effect size distribution was only weakly enriched for genes in 
molecular and ion transport pathways. For both the negative and positive end of the 
gene results distributions, GSEA identified more significant enrichments (at 
FDR<0.05) in the GRCCA results than in the DGE results (Fig 4F), demonstrating 
stronger biological enrichment of GRCCA results. 
 

 
 

 
 

Figure 4. A comparison of traditional SCZ-control DGE analysis and GRCCA results. (A) 
Volcano plot showing SCZ-control differential gene expression in the current analysis. The x-axis 
represents the log2(fold change) (L2FC) of the gene, in which a positive change (red) indicates the 
gene was upregulated in SCZ, and a negative change (blue) indicates the gene was downregulated 
in SCZ. The y-axis shows the -log10(p-value), and genes that were significant after FDR correction 
are outlined in black. The dashed line indicates P=0.05; genes that did not meet this threshold are 
colored in gray. Genes with low p-values (-log10(P) > 4.2) and/or high absolute fold change 
(abs(L2FC) > 0.11) are labeled. (B) The 10 differentially expressed genes (DEGs) with the highest 
absolute value effect size (t-statistic) in the DGE analysis. The y-axis lists the symbols for these 
genes, while the x-axis & point color indicate their respective effect sizes. Point size indicates -
log10(P). (C) Relationship between gene structure correlation (rx) and DE t-statistic from the 
differential gene expression analysis. The x-axis shows the DE effect size for each gene and the y-
axis shows their respective structure correlations, determined by GRCCA. Points are colored by 
structure correlation; risk genes are outlined in black. The DE t-statistic and GRCCA rx are correlated 
at r = 0.53 (P < 0.001). (D) Enrichment of SCZ-control DEGs for risk genes identified in psychiatric 
disorder-related GWAS. Panel legend is the same as Fig 3A, with the following statistics: SCZ 
common (broad) P = 0.48; SCZ common (prioritized) P = 0.33; SCZ rare P = 0.48; ASD P = 0.96; 
BD P = 0.56; MDD P = 0.07. (E) Gene ontology gene set enrichment analysis (GSEA) results for 
the distribution of DGE effect sizes. Panel legend is the same as Fig 3D. (F) The number of 
significant GO pathways identified by DGE and GRCCA. The x-axis and bar color indicates analysis 
(DGE or GRCCA), and the height of the bar on the y-axis shows the number of significant pathways 
per GO GSEA (FDR < 0.05). The plots are facetted by pathway direction, where negatively enriched 
pathways (NES < 0.05; blue) is represented on the left and positively enriched pathways (NES > 
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Transcript-level analysis revealed isoform-specific patterns for SCZ risk genes 
Increasing evidence supports dysregulation in alternative splicing patterns as a key 
link between genetic variation and neuropsychiatric disease 14–16,21. Thus, we 
leveraged this deeply sequenced dataset and ran the same GRCCA model on the 
normalized and corrected transcript-level expression data (N=54302; Fig S10A).  SCZ 
once again emerged as the covariate most strongly associated with the latent variable 
(ry=0.98; FDR<0.001; Fig S10B); however, the overall model did not reach 
significance at P=0.001, likely due to the high number of features relative to sample 
size (P=0.009; Fig S10A). Therefore, to better illustrate the known SCZ signal, we re-
ran the model including only transcript derivatives of either: (a) genes associated with 
common variants linked to SCZ, BD, MDD, or ASD, or (b) genes significantly 
associated with the latent variable in the gene-level GRCCA (rx FDR<0.05) (collective 
N=12986). In this subset analysis, the best fitting model incorporated 40% of the 
variance in the expression data, optimizing the X-Y latent variable correlation at 0.67 
and P=0.001 across 1000 permutations (Table S6A; Fig S10C). SCZ maintained its 
salient latent variable association (ry=0.94; FDR<0.001; Fig 5A, Table S6B). 
Covariate and transcript structure correlations are provided as a resource in this paper 
(Table S6B and Table S6C). 
 
Transcript structure correlations were significantly correlated with gene structure 
correlations (R=0.64; P<0.001; Fig 5B), demonstrating alignment across analysis 
levels. In general, SCZ risk genes that were positive at the gene-level were also 
positive at the transcript level (Fig 5B). However, transcript derivatives of the same 
gene demonstrated distinct structure correlation patterns, giving rise to gene-level 
significance (or non-significance). A gene could be identified as significant if it had one 
or more significant transcripts driving the effect (e.g., in the case of FMNL1 and C3; 
Fig 5C), or an accumulative effect of several sub-threshold transcripts in the same 
direction (e.g., EZH1). In contrast, the transcript derivatives of many non-significant 
genes were also not significant (e.g., PLCL2; Fig 5C); however, some non-significant 
genes did have one or more significant transcript derivatives with opposite directions 
of effect (e.g., TMEM127 and CDK14). These findings underscore the importance of 
analyzing transcript-level data to identify expression patterns that cannot be detected 
at the gene-level. 

structure correlation; risk genes are outlined in black. The DE t-statistic and GRCCA rx are correlated 
at r = 0.53 (P < 0.001). (D) Enrichment of SCZ-control DEGs for risk genes identified in psychiatric 
disorder-related GWAS. Panel legend is the same as Fig 3A, with the following statistics: SCZ 
common (broad) P = 0.48; SCZ common (prioritized) P = 0.33; SCZ rare P = 0.48; ASD P = 0.96; 
BD P = 0.56; MDD P = 0.07. (E) Gene ontology gene set enrichment analysis (GSEA) results for 
the distribution of DGE effect sizes. Panel legend is the same as Fig 3D. (F) The number of 
significant GO pathways identified by DGE and GRCCA. The x-axis and bar color indicates analysis 
(DGE or GRCCA), and the height of the bar on the y-axis shows the number of significant pathways 
per GO GSEA (FDR < 0.05). The plots are facetted by pathway direction, where negatively enriched 
pathways (NES < 0.05; blue) is represented on the left and positively enriched pathways (NES > 
0.05; red) is represented on the right. 
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Figure 5. Alternative splicing patterns revealed by transcript-level GRCCA. (A) Covariate 
structure correlations (ry) as determined by transcript-level GRCCA. Panel legend is the same as 
Fig 2B. (B) Gene-level structure correlations (x-axis) and transcript-level structure correlations (y-
axis) were correlated at r  = 0.64 (P < 0.001). Transcript structure correlations were mapped to gene-
level by taking the maximum absolute structure correlation across all transcript derivatives of a 
specific gene. SCZ risk genes are outlined in black. (C) Structure correlations of transcript 
derivatives of select SCZ-related genes that were significant (top) and non-significant (bottom) in 
the gene-level GRCCA analysis. 
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Discussion 
Complex psychiatric disorders are marked by subtle, coordinated changes across 
many genes, making such disorders particularly well-suited to network-based 
multivariate analyses. Here, we adapted a multivariate approach, GRCCA, previously 
used in neuroimaging, to characterize the transcriptional landscape of sgACC in three 
major mental disorders. The results capture gene expression patterns often missed by 
traditional methods. 
 
Currently, there are two widely used univariate approaches to characterize gene 
expression patterns in post-mortem brain tissue. Differential gene expression analysis 
identifies individual genes with statistically different levels of expression across 
conditions 48. This approach fails to capture the biological interdependencies among 
genes, which are known to function in coordinated programs. WGCNA accounts for 
this limitation by constructing gene networks based on expression patterns across 
samples6 and defining modules that reflect shared underlying biological functionality 
and/or transcriptional regulation36. However, WGCNA comes with its own limitations, 
as functionally fluid gene modules are categorically assigned. Also, current methods 
linking modules to covariates of interest (e.g., psychiatric disorder) ignore a large 
proportion of variance in expression data, as only the first principal component (PC1) 
of the module expression matrix is considered 35,49. Though useful, DGE and WGCNA 
have thus far not implicated a convergent gene set across schizophrenia studies, nor 
do they consistently align with gene sets that have been curated by GWAS 9. 
 
GRCCA, a multivariate approach, addresses the limitations of both traditional 
approaches by modeling distributed effects across genes and covariates. It 
additionally accounts for nonindependence of features by leveraging information about 
the underlying data structure (in this case, WGCNA-derived co-expression modules). 
Unlike WGCNA alone, GRCCA incorporates optimal variance in the expression data 
(i.e., more than PC1 without overfitting). Altogether, GRCCA accounts for interactions 
of genes with each other and with environmental covariates, including medications. 
 
In this GRCCA analysis, one significant latent, or “hidden”, variable was identified, 
representing the shared variation between gene expression and all covariates 
(including both psychiatric disorders and toxicology data). The covariate with by far 
the most significant structure correlation, and thus highest contribution to the latent 
variable, was SCZ. This contribution was above that of MDD or BD, or any of the 
toxicology dimension covariates. Detangling the effects of the many factors that drive 
gene expression, notably medication and recreational drug usage, is an outstanding 
challenge in human post-mortem transcriptomic studies 9,11,12,18. Though multivariate 
GRCCA does not measure the causality of disorder-related changes in gene 
expression versus consequential and environmental factors accumulated over the 
lifetime, it is able to quantify relative contributions of these variables, and thus is a step 
towards decoupling their respective effects. 
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The significant and specific enrichment of SCZ risk genes in the GRCCA results 
provides strong evidence of such disorder-covariate decoupling. Common variant-
associated genes identified through SCZ GWAS 3 were overrepresented at the 
positive end of the GRCCA gene structure correlation vector. In contrast, genes 
associated with ASD, BD, and MDD were not; a finding that is potentially influenced 
by the lower SNP-based heritability estimates of these phenotypes compared to SCZ 
3–5,46. It is unsurprising that SCZ risk genes were clustered toward the positive end of 
the GRCCA results, as this pole was enriched for neurons and synaptic signaling 
pathways, and GWAS association signals with SCZ are known to be highly enriched 
in neurons 1,3. To our knowledge, this risk gene enrichment is a unique finding in 
transcriptomic analysis of bulk post-mortem tissue 9,11. Conversely, it was unexpected 
to find rare variants nominally enriched among genes with positive structure 
correlations; however, previous studies have shown that the downstream expression 
impacts of loss-of-function genetic mutations are complex and varied, highlighting the 
role of compensatory mechanisms 50,51. It is of further note that SCZ-related variation 
in gene expression, even once decoupled from environmental covariates, may 
represent a lifetime consequence rather than an underlying cause of the disorder12. 
However, in demonstrating that genes with allelic variants associated with SCZ also 
show robust expression changes in our GRCCA analysis, we highlight a clear 
connection across biological levels in SCZ pathophysiology. 
 
Another strength of the GRCCA approach is its biological interpretation, as the GO 
pathway enrichments of the gene structure correlation vector were stronger than the 
pathway enrichments of the gene t-statistic vector determined via DGE analysis. 
GSEA of GO terms revealed an upregulation of genes associated with neurons and 
neuron-related pathways, including vesicle transport and synaptic signaling, and 
downregulation of genes associated with glial cells and immune-related and cellular 
transport pathways. Post-mortem analyses of the schizophrenia transcriptome 
currently provide mixed evidence for the role and direction of neuron- and immune-
related enrichments 52. For example, a recent SCZ single-cell study provides evidence 
for downregulation of synaptic signaling genes in excitatory neurons 53. In 
transdiagnostic bulk data, Gandal and colleagues described a broad gradient of 
dysregulation with the down-regulation of neuronal and synaptic signaling genes and 
the up-regulation of glial-immune signals 7. However, specific to SCZ, they indeed 
report down-regulation of a microglia-specific gene module, and up-regulation of 
neuron and synaptic signaling/vesicle modules 7. A cross-regional study identified 
multiple immune gene sets that were down-regulated in the dlPFC and hippocampus 
in SCZ 54. A previous study in the ACC also identified down-regulation of immune-
associated genes in SCZ, and the upregulation of ubiquitin-proteasome system genes 
(congruent with our results) 55. Our findings thus contribute to a growing literature 
implicating the dysregulation of immune- and neuron-related genes in SCZ. 
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A key limitation in the interpretation of the GRCCA results is that they were derived 
from bulk, rather than single-cell data. Cell-type correction was not performed as a 
preprocessing step due to lack of a well-validated deconvolution method 56. Thus, the 
apparent decrease of immune-related genes in SCZ could reflect a decrease in the 
proportion of (micro)glia, rather than down-regulation of the genes themselves. 
However, available single-cell data do not support a substantial change in any major 
cell-type fraction in SCZ 53; thus, it is plausible that the enrichments we detected 
actually reflect a change in gene expression. Furthermore, the GRCCA vector of gene 
structure correlations was significantly anticorrelated with a single-cell-derived gene 
expression latent factor shown to decrease in SCZ (Fig S11) 57, demonstrating 
consistency of bulk-derived GRCCA results with single-cell findings. 
 
In sum, we illustrate a promising new approach to characterizing disorder-related gene 
expression differences in post-mortem transcriptomic data. Due to the inherent 
complexity of genomic data, methods that can adequately handle such complexity are 
required to characterize the molecular landscape of psychiatric disorders. We have 
presented evidence for a developmentally-sensitive, neuro-immune gradient of 
transcriptomic dysregulation in schizophrenia. We have published the gene- and 
transcript-level datasets and computational tools used to generate these results as an 
open resource to facilitate usage across post-mortem transcriptomic studies. 
 

Data Availability 
The raw count data can be downloaded from dbGAP at 
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-
bin/study.cgi?study_id=phs000979.v2.p2. The case-control differential gene 
expression results reported by Akula et al (2021) 8 can be found at 
https://www.nature.com/articles/s41386-020-00949-5 (Supplementary Table 4 for 
SCZ vs controls). PsychENCODE developmental expression data are made 
available by Li et al (2018) 42 https://www.science.org/doi/10.1126/science.aat7615. 
Cell-type specific latent factor 4 loadings are published in 
https://www.nature.com/articles/s41586-024-07109-5. 
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