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ABSTRACT

Canonical correlation analysis (CCA) and partial least squares (PLS) are powerful multivariate methods for capturing
associations across 2 modalities of data (e.g., brain and behavior). However, when the sample size is similar to or
smaller than the number of variables in the data, standard CCA and PLS models may overfit, i.e., find spurious as-
sociations that generalize poorly to new data. Dimensionality reduction and regularized extensions of CCA and PLS
have been proposed to address this problem, yet most studies using these approaches have some limitations. This
work gives a theoretical and practical introduction into the most common CCA/PLS models and their regularized
variants. We examine the limitations of standard CCA and PLS when the sample size is similar to or smaller than the
number of variables. We discuss how dimensionality reduction and regularization techniques address this problem
and explain their main advantages and disadvantages. We highlight crucial aspects of the CCA/PLS analysis
framework, including optimizing the hyperparameters of the model and testing the identified associations for sta-
tistical significance. We apply the described CCA/PLS models to simulated data and real data from the Human
Connectome Project and Alzheimer’s Disease Neuroimaging Initiative (both of n > 500). We use both low- and high-
dimensionality versions of these data (i.e., ratios between sample size and variables in the range of ~1-10 and
~0.1-0.01, respectively) to demonstrate the impact of data dimensionality on the models. Finally, we summarize the

key lessons of the tutorial.
https://doi.org/10.1016/j.bpsc.2022.07.012

Neuroimaging datasets with sample sizes of n > 1000 (e.g.,
UK Biobank, Human Connectome Project [HCP], Alzheimer’s
Disease Neuroimaging Initiative [ADNI]) represent a unique
opportunity to advance population neuroscience and mental
health (1-3). These datasets comprise multiple data modalities
(e.g., structural magnetic resonance imaging, resting-state
functional magnetic resonance imaging, mental health,
cognition, environmental factors and genetics), several of
which can be high-dimensional, meaning that there are hun-
dreds or thousands of variables per subject. Understanding the
links across these different modalities is fundamental for
enabling new discoveries; however, analyzing multimodal
datasets with more variables than samples poses technical
challenges.

The most established methods to find associations across
multiple modalities of multivariate data are canonical correla-
tion analysis (CCA) (4) and partial least squares (PLS) (5). CCA
and PLS have recently become very popular, with numerous
applications linking brain imaging to behavior or genetics [e.g.,
(6-26)]. However, when the variables in at least one modality
(e.g., brain) outnumber the sample size, standard CCA and
PLS models may overfit, i.e., they are more likely to find

spurious associations that generalize poorly to independent
samples [e.g., (26-28)]. Moreover, there is no unique standard
CCA solution when the number of variables exceeds the
sample size. Two approaches have been proposed to address
this problem: 1) reducing the dimensionality of the data with
principal component analysis (PCA) (9,10,12,22,24,26) and 2)
using regularized extensions of CCA and PLS (11,20,23,27).
However, most studies using these approaches have potential
limitations. For instance, 1) they usually do not optimize the
hyperparameters (e.g., the number of principal components
[PCs] or amount of regularization) (9,10,12,15,22,24,26); 2)
many studies do not test the significance of the associations
using hold-out data (e.g., out-of-sample correlation)
(7,9-11,22); and 3) they often do not assess the stability of the
CCA/PLS model (7,9,18,21-25). Finally, few studies compare
different CCA/PLS models and analytic frameworks across
different datasets with different dimensionalities [e.g., (25-27)).

Several tutorial papers were recently published on CCA and
PLS (29-32). Here, we complement these tutorials by discus-
sing some important conceptual and practical aspects of these
methods. These comprise 1) the advantages and disadvan-
tages of the various CCA/PLS models, 2) the impact of PCA
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and regularization on these models (e.g., on overfitting and
stability), and 3) the importance of the analytic framework in
optimizing the models’ hyperparameters and performing sta-
tistical inference.

In Part 1, we present the theoretical background of these
models and discuss the most common strategies to mitigate
the problems caused when the ratio between sample size and
number of variables is small (e.g., around ~0.1-0.01). We also
examine the most prevalent analytical frameworks used with
CCA/PLS models. In Part 2, we apply the models introduced in
Part 1 to simulated data and real data from the HCP and ADNI
(n > 500 in all). We illustrate how the different CCA/PLS
models perform with data dimensionalities often used in
practice (i.e., ratios between sample size and number of vari-
ables in the ranges of ~1-10 or ~0.1-0.01). Moreover, we
show that regularization can be helpful even when the number
of variables in both data modalities is smaller than the sample
size. Mathematical details of the CCA/PLS models and their
connections are provided in the Supplement.

PART 1: TECHNICAL BACKGROUND OF CCA AND
PLS

CCA/PLS Optimization and Nomenclature

CCA (4) and PLS (5) are multivariate latent variable models that
capture associations across 2 modalities of data (e.g., brain
and behavior). For example (Figure 1), X contains voxel-level
brain variables and Y contains behavioral variables from
item-level self-report questionnaires (and are matrices with
rows and columns representing subjects and variables,
respectively). Standard CCA/PLS models find pairs of brain
and behavioral weights wy and w,, (column vectors) such that
the linear combination (weighted sum) of the brain and
behavioral variables maximizes the correlation (CCA) or
covariance (PLS) between the resulting latent variables, i.e.,
between § = Xw, and w = Yw,, respectively.

In the PLS literature, the weights are often referred to as
saliences and the latent variables as scores. In the CCA liter-
ature, the weights are often referred to as canonical vectors,
the latent variables as canonical variates, and the correlation
between the latent variables as canonical correlations. The
brain and behavior weights have the same dimensionality as
their respective data modality (e.g., number of brain/behavioral
variables) and quantify each brain and behavioral variable’s
contribution to the identified association. Sometimes, Pear-
son’s correlations between the brain and behavioral variables
and their respective latent variable are presented instead of the

Canonical Correlation Analysis (CCA)/
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model’s weights and are called structure correlations (CCA)
(33) or loadings (PLS) (34) (for details, see the Supplement).
The latent variables (one latent variable score per data modality
and subject) quantify how the associative effect is expressed
across the sample. Table 1 summarizes the different nomen-
clatures used in the CCA and PLS literature.

While standard CCA refers to a single method, standard PLS
refers to a family of methods with different modeling aims (e.g.,
assuming asymmetric or asymmetric relationship between the 2
data modalities; for details, see the Supplement). Both standard
CCA and PLS can be solved by iterative [e.g., alternating least
squares (35), nonlinear iterative PLS (36)] and noniterative [e.g.,
eigenvalue problem (29,34)] methods. In the case of iterative
methods, once a pair of weights is obtained, the corresponding
associative effect is removed from the data (by a process called
deflation) and new associations are sought.

Because standard CCA maximizes the correlation between
the latent variables, it is more sensitive to the direction of the
relationships across modalities, and it is not driven by within-
modality variances. On the other hand, standard PLS—which
maximizes covariance—is less sensitive to the direction of
the across-modality relationships, as it is also driven by within-
modality variances. Formally, we can see this from the opti-
mization of these models. Standard CCA optimizes correlation
across modalities:

MaXu, w, COIT (Xwy, YW, ) 1

Standard PLS optimizes covariance across modalities—the
product of correlation and standard deviations (i.e., square root
of variance):

MaXw, w, COV (XWy, YW, ) = corr (Xwy, Yw, ), /var(Xwy)

xq/var(Yw,)

This also means that standard CCA and PLS are equivalent
optimization problems when var(Xwy) = var(wa) =1, which
is true when the within-modality variances are identity
matrices, i.e., X’ X = Y'Y = 1.

@

Limitations of Standard CCA/PLS Models

When the ratio between the sample size and the number of
variables is similar to or smaller than 1, standard CCA/PLS
models present limitations. These limitations can exist irre-
spective of sample size if the number of variables is large or if
the variables are highly correlated. In the case of standard

Figure 1. Overview of canonical correlation anal-
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Table 1. Different Nomenclatures in CCA and PLS
Literature and Summary of the Corresponding Terms
Correlation
Between
Original
Model Variables and
Model Relationship Weights Latent Variable Latent Variable
CCA Mode/ Canonical Canonical Structure
association vector/ variable/ correlation
coefficient variate
PLS Association Salience Score Loading

CCA, canonical correlation analysis; PLS, partial least squares.

CCA, the key limitations are that 1) the optimization is ill-posed
(i.e., there is no unique solution) when the number of variables
in at least one of the modalities exceeds the sample size and 2)
the CCA weights wy and w,, are unstable when the variables
within one or both modalities are highly correlated, known as
the multicollinearity problem (37). Not surprisingly, these limi-
tations might sound familiar, as standard CCA can be viewed
as a multivariate extension of the univariate general linear
model (38,39). The standard PLS optimization is never ill-
posed and copes with multicollinearity [i.e., standard PLS
weights are stable (36)]; however, standard PLS and CCA
cannot perform feature selection (i.e., setting the weights of
some variables to zero) and may therefore have low perfor-
mance in cases in which the effects are sparse.

These limitations can be addressed by dimensionality
reduction (i.e., PCA) or regularization. Regularization adds
further constraints to the optimization to solve an ill-posed
problem or prevent overfitting. For CCA/PLS models, the
most common forms of regularization are L1-norm (lasso) (40),
L2-norm (ridge) (41), and combinations of L1-norm and L2-
norm regularization (elastic-net) (42).

CCA With PCA Dimensionality Reduction

PCA transforms one modality of multivariate data into uncor-
related PCs (it is also related to whitening, see Effects of
Prewhitening on CCA/PLS Models). PCA is often used as a
naive dimensionality reduction technique, as PCs explaining
little variance are assumed to be noise and discarded, and the
remaining PCs are entered into standard CCA. However, PCA
when applied before CCA (PCA-CCA) can be also seen as a
technique similar to regularization: It makes the CCA model
well posed and addresses the multicollinearity problem.

The number of retained PCs can be selected based on their
explained variance, e.g., 99% of total variance. In PCA-CCA
applications, often the same number of PCs are chosen for
both data modalities, based on the lower-dimensional data,
usually behavior [e.g., (9,10,22,24)]. Sometimes, the same
proportion of explained variance—rather than numbers of
PCs—is used for both data modalities [e.g., (12,26)]. One
problem with discarding PCs with low variance is that there is
no guarantee that PCs with high variance in either modality are
best to link the different data modalities, while some discarded
PCs might contain useful information. To address this prob-
lem, we can use a data-driven approach, by selecting the
number of PCs that maximize the correlation across modalities
(see CCA With PCA Dimensionality Reduction Versus RCCA in
High-Dimensional Data in Part 2).
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Regularized CCA

L2-norm regularization is a popular form of regularization for ill-
posed problems or for mitigating the effects of multi-
collinearity, originally used in ridge regression (41). In L2-norm
regularization, the added constraint corresponds to the sum of
squares of all weight values,’ which forces the weights to be
small but does not make them zero. L2-norm regularization
has been proposed for CCA (43), commonly referred to as
regularized CCA (RCCA) (34,44-46). Interestingly, in RCCA, the
regularization terms added to the CCA problem lead to a
mixture of standard CCA and standard PLS optimization. We
can see this from the RCCA optimization problem:

corr (Xwy, Yw, ), /var(Xwy),/var (Ywy)

MaXy,
W,y \/(1 fcx)var(XwX)+cX\/(1fcy)var(wa)Jrcy

where the 2 hyperparameters (cx, ¢,) control the amount of
regularization and provide a smooth transition between stan-
dard CCA (cx = ¢, = 0, not regularized) and standard PLS
(cx = ¢y = 1, most regularized) (34,44). Importantly, as L2-
norm regularization mitigates multicollinearity, it increases the
stability of the RCCA weights. However, it also means that
similar to standard PLS, RCCA can be driven by within-
modality variances. For additional connections between stan-
dard CCA, RCCA, standard PLS, and how they are related to
PCA-CCA, see the Supplement.

Sparse PLS

L1-norm regularization was originally proposed in lasso
regression (40). In L1-norm regularization, the added constraint
corresponds to the absolute sum of weight values,” which sets
some of the weight values to zero, resulting in variable selec-
tion and promoting sparsity. Sparse solutions facilitate the
interpretability of the model and may improve performance
when only a subset of variables is relevant (40). However,
sparsity can also introduce instability to the model if different
sets of variables provide similar performance. Elastic-net reg-
ularization is a mixture of L1-norm and L2-norm regularization
that combines the properties of both forms of regularization
and can mitigate the instability of L1-norm regularization (42).
In one popular algorithm (17), which we will refer to as sparse
PLS (SPLS), hyperparameters control the amount of L1-norm
regularization or sparsity. Because standard PLS can be
seen as CCA with maximal L2-norm regularization (see previ-
ous section), SPLS can also be viewed as an elastic-net
regularized CCA (for details, see the Supplement).

Effects of Prewhitening on CCA/PLS Models

In machine learning, data are often whitened as a pre-
processing step. Whitening transforms the original variables
into new, uncorrelated features, which are normalized to have
unit length (i.e., the L2-norm of each feature equals 1).

"L2-norm:||wl|, = /> ;w?, where w = (w1, W, ...,W,) is a vector
of size n.

2L1-norm:||wl|; = >";|wi|, where w = (wq,ws, ..., w,) is a vector of
size n.
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Whitening is not a unique transformation, and the most
commonly used forms are PCA, Mahalanobis whitening, and
Cholesky whitening (47). The critical difference between PCA
and PCA whitening is that PCA retains the variance of the
original data, i.e., the PCs are not normalized to have unit
length.

Whitening as a preprocessing step has a major drawback in
CCA/PLS models: The beneficial effects of L1-norm and L2-
norm regularization on the original variables cannot be ach-
ieved anymore, as the whitened data are the new inputs of the
model. In the case of SPLS, L1-norm regularization will result in
sparsity on the whitened variables (instead of on the original
variables); thus, the interpretability of the results will not be
facilitated. In the case of RCCA, L2-norm regularization is not
active on whitened data, which means that standard CCA,
RCCA, and standard PLS will yield the same results. For
additional details on whitening, see the Supplement.

Analytic Frameworks for CCA/PLS Models

The statistical significance of the CCA/PLS model (i.e., the
number of significant associative effects) can be evaluated
using either a descriptive or a predictive (also referred to as a
machine learning) framework. The 2 frameworks have distinct
goals: The aim of the descriptive framework is to detect above-
chance associations in the current dataset, whereas the aim of
the predictive framework is to test whether such associations
generalize to new data (48-51).

In the descriptive framework (Figure 2A), the CCA/PLS model
is fitted on the entire sample; thus, the statistical inference is
based on in-sample correlation. In this framework, there is
usually no hyperparameter optimization (i.e., the number of PCs
or regularization parameter is fixed a priori). In the predictive
framework (Figure 2B), the CCA/PLS model is fitted on atraining/
optimization set and evaluated on a test/holdout set; thus, the
statistical inference is based on out-of-sample correlation. This
procedure assesses the generalizability of the model, i.e., how

A Descriptive framework
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well the association found in the training set generalizes to an
independent test set. In the predictive framework, the hyper-
parameters are usually optimized; therefore, the training/opti-
mization set is further divided into a training set and a validation
set, and the best hyperparameters are selected based on out-of-
sample correlation in the validation set. In both descriptive and
predictive frameworks, permutation inference (based on in-
sample or out-of-sample correlation) is often used to assess
the number of significant associative effects (51,52).

Last, an important component of any CCA/PLS framework
is testing the stability of the model. Usually a bootstrapping
procedure is applied to provide confidence intervals on the
model’s weights (51). Recently, stability selection
(19,20,53-55) has been proposed with the aim of selecting the
most stable CCA/PLS model in the first place, rather than
evaluating the stability of the model post hoc. Alternatively, the
stability of the CCA/PLS models can be measured as the
average similarity of weights across different splits of training
data, which avoids the additional computational costs of the
previous 2 approaches (27). For more details on analytic
frameworks, see for example (22,27,51,56).

PART 2: DEMONSTRATIONS OF CCA AND PLS
ANALYSES

Description of Experiments

In order to demonstrate the properties of different CCA and
PLS approaches, we applied the models introduced in Part 1
to real and simulated datasets with different dimensionalities
and sample sizes. Table 2 gives an overview of all experiments.

We chose the HCP and the ADNI datasets based on 2
recent landmark studies (22,56). In the HCP dataset, we used
resting-state functional magnetic resonance imaging connec-
tivity data (19,900 and 300 brain variables in the high- and low-
dimensional data, respectively) and 145 nonimaging subject
measures (e.g., behavioral, demographic, lifestyle measures) of

B Predictive framework

| Overall data | —>| in-sample correlation

| Overall data | —_— | Training data

Select best hyperparameters

Fit CCA/PLS with
fixed hyperparameters
model weights

possible hyperparameters

model weights

l Fit CCA/PLS with

Fit CCA/PLS with
best hyperparameters

—>| Validation data | —>| out-of-sample correlation

L——> | model weights T

| Test data |—>| out-of-sample correlation |

Figure 2. Descriptive and predictive (or machine learning) frameworks. (A) The descriptive framework fits canonical correlation analysis/partial least squares
(CCA/PLS) model with fixed hyperparameters (i.e., the number of principal components or regularization parameter) on the entire sample; thus, the statistical
inference is based on in-sample correlation. (B) The predictive (or machine learning) framework fits CCA/PLS model on a training set and evaluates the model on a
test set; thus, the statistical inference is based on out-of-sample correlation. The hyperparameters are usually optimized: The training set is further divided into a
training set and a validation set, and the best hyperparameters are selected based on out-of-sample correlation in the validation set. We note that although not all
models maximize correlation, typically all CCA/PLS models are evaluated based on the correlation between the latent variables (see Figure 1).
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Table 2. Summary of CCA/PLS Models on High- and Low-
Dimensional Real and Simulated Data

Analytical ~ Hyperparameter Model

Model Framework Optimization Hyperparameter

High-Dimensional Data

PCA-CCA Descriptive None (fixed) Number of PCs

PCA-CCA Predictive None (fixed) Number of PCs

PCA-CCA Predictive Data-driven Number of PCs

RCCA Predictive Data-driven Amount of L2-norm
regularization

Standard PLS Predictive None None

SPLS Predictive Data-driven Amount of L1-norm
regularization

Low-Dimensional Data

Standard CCA Predictive None None

RCCA Predictive Data-driven Amount of L2-norm
regularization

Standard PLS Predictive None None

SPLS Predictive Data-driven Amount of L1-norm

regularization

CCA, canonical correlation analysis; PC, principal component; PCA,
principal component analysis; PLS, partial least squares; RCCA,
regularized canonical correlation analysis; SPLS, sparse partial least
squares.

1003 healthy subjects. In the ADNI dataset, we used whole-
brain gray matter volumes (168,130 and 120 brain variables
in the high- and low-dimensional data, respectively) and 31
item-level measures of the Mini-Mental State Examination of
592 elderly subjects. We generated the simulated data with a
sparse signal (i.e., 10% of the variables in each modality were
relevant to capture the association across modalities) and
properties similar to the HCP dataset (in terms of sample size,
dimensionality, and correlation between latent variables).
Table 3 displays the characteristics of the real and simulated

Table 3. Characteristics of Real and Simulated Datasets
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datasets. For further details of the datasets and the simulated
data generation, see the Supplement.

The PCA-CCA model was used both with fixed numbers
of PCs within a descriptive framework and with optimized
number of PCs within a predictive framework. All the other
CCA/PLS models were used within a predictive framework.
The predictive framework was based on Monteiro et al.
(56), who used multiple test/holdout sets to assess the
generalizability and robustness of the CCA/PLS models
(detailed in the Supplement). In both frameworks, permu-
tation testing was used to assess the number of statisti-
cally significant associative effects based on in-sample and
out-of-sample correlations between the latent variables,
respectively. Importantly, the family structure of the HCP
dataset was respected during the different data splits
(training, validation, test/holdout sets) and permutations
(57). We used iterative methods to solve the CCA/PLS
model and applied mode-A deflation for standard PLS and
SPLS and generalized deflation for standard CCA, PCA-
CCA, and RCCA (for details, see the Supplement). For
simplicity, we present the results for the first associative
effect in most CCA/PLS experiments (for a summary of all
associative effects, see Table S1). Throughout the article,
we present the weights (canonical vector for CCA models,
salience for PLS models) and latent variables obtained by
the model.

We used linear mixed-effects models to compare the
different CCA/PLS models on the following measures across
the outer training or test sets: 1) in-sample correlation, 2) out-
of-sample correlation, 3) similarity of the model weights
(measured by Pearson’s correlation), and 4) variance explained
by the model. In addition, we compared the number of PCs
between PCA-CCA models with fixed versus data-driven
numbers of PCs. We report significance at p < .005 in all
linear mixed-effects models. For further details of the linear
mixed-effects analyses, see the Supplement. We also quanti-
fied the rank similarity of the weights (measured by Spear-
man’s correlation) across the different CCA/PLS models in the
real datasets.

HCP ADNI Simulation
Low High Low High Low High
Data Dimensional Dimensional Dimensional Dimensional Dimensional Dimensional
Subjects Healthy Healthy Healthy + clinical Healthy + clinical Not applicable Not applicable
(n =1001) (n = 1001) (n = 592) (n =592) (n = 1000) (n = 1000)
Brain Connectivity of Connectivity of ROI-wise” gray matter Voxelwise gray matter Not applicable Not applicable
Variables 25 ICA* 200 ICA® volume (d = 120) volume (d = 168130) (d = 100) (d = 20000)
components components
(d = 300) (d = 19900)
Behavioral Behavior, Behavior, Items of MMSE® Items of MMSE® Not applicable Not applicable
Variables psychometrics, psychometrics, questionnaire questionnaire (d = 31) (d = 100) (d =100)
demographics demographics (d=231)
(d =145) (d =145)

ADNI, Alzheimer’s Disease Neuroimaging Initiative; d, number of variables; HCP, Human Connectome Project; ICA, independent component

analysis; ROI, region of interest; MMSE, Mini-Mental State Examination.
?Data-driven brain parcellation.

PBrain parcellation using the Automated Anatomical Labeling 2 atlas (62).

°Screening questionnaire for dementia (63).
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A High-dimensional ADNI dataset
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Figure 3. Dot plot of in-sample and out-of-sample correlations for the first
associative effects of all experiments in all 3 high-dimensional datasets.
Each dot represents a model trained on the overall data (descriptive
framework) or on 10 random subsets of the data (predictive framework). The
horizontal jitter is for visualization purposes. (A) High-dimensional Alz-
heimer's Disease Neuroimaging Initiative (ADNI) dataset. (B) High-
dimensional Human Connectome Project (HCP) dataset. Note that we
display the second associative effect for standard partial least squares (PLS)
and sparse PLS (SPLS), as it is the most similar to the first associative ef-
fects identified by the other models. (C) High-dimensional simulated data-
set. CCA, canonical correlation analysis; data-driven, data-driven number of
principal components; DESC, descriptive framework; PC, principal
component; PCA, principal component analysis; PRED, predictive frame-
work; RCCA, regularized canonical correlation analysis.
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In-Sample Versus Out-of-Sample Correlation in
High-Dimensional Data

Figure 3 and Table 4 display the in-sample and out-of-sample
correlations for all experiments using all 3 high-dimensional
datasets. On average the out-of-sample correlations are
lower than the in-sample correlations (t14 = 4.51, p = .0005). In
real datasets, CCA/PLS models with dimensionality reduction
or regularization provide high out-of-sample correlations in
most cases, underlining that these models generalize well to
unseen data. The only notable exceptions are standard PLS
and SPLS, which presented significantly lower out-of-sample
correlations in the HCP dataset (Fo56 = 289.30, p < .0001)
(Figure 3B). This can be attributed to the different properties of
the HCP dataset (e.g., higher noise level and nonsparse
associative effect) and the fact that standard PLS and SPLS
are especially dominated by within-modality variance in this
dataset (Table 4).

In conclusion, we recommend embedding all models in a
predictive framework that splits the data into training and test
sets to assess the model’s out-of-sample generalizability.

CCA With PCA Dimensionality Reduction Versus
RCCA in High-Dimensional Data

In this section, we present the results of applying PCA-
CCA and RCCA to all 3 high-dimensional datasets. We
focus on experiments using the predictive framework,
compare PCA-CCA with fixed versus data-driven numbers
of PCs, and compare both of these models with RCCA.

Figures 4A-C and 5A-C display the brain and behavioral
weights and corresponding latent variables for the 3 models
(note that for the HCP dataset, the brain weights were
transformed into brain connection strength increases/de-
creases). Figure 6 compares the brain and behavioral weights
using rank similarity across the models, which indicates that
although the weights are similar across the 3 models, data-
driven PCA-CCA and RCCA are more similar to each other.
The model weights and latent variables for the simulated
dataset can be found in Figures 7A-C, which suggest that all
3 models recovered sufficiently the true weights of the
generative model. Nevertheless, the nonsparse models
attributed nonzero weights for many nonrelevant variables
(for details, see Table S2).

To further investigate the characteristics of the 3 models,
Table 4 shows the stability of weights and the explained variance
by the models. The stability of weights varied significantly across
brain and behavior modalities (F1 go4 = 84.51, p < .0001) and
models (F2,g04 =91.63, p <.0001). Notably, the stability of RCCA
weights was consistently high. The explained variance varied
significantly only across modalities (F+ 174 = 241.55, p < .0001)
but not across models (F»,174 = 0.31, p =.7303).

Next, we examined the number of PCs in the 2 PCA-CCA
models. We found a significant interaction between the
effect of data modality and model on the number of PCs
(F1,114 = 22.63, p < .0001). Data-driven PCA-CCA yielded
more brain PCs and fewer behavioral PCs than PCA-CCA
with fixed number of PCs (Table S3). These results
confirm that lower-ranked brain PCs might also carry in-
formation that links brain and behavior and should
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Table 4. Main Characteristics of the First Associative Effects in the High-Dimensional Datasets Obtained With the Different

CCA/PLS Models Using the Predictive Framework

Brain Behavior Across-Modality Relationship
Stability of Explained Stability of Explained In-Sample Out-of-Sample
Model Weights® Variance” Weights® Variance® Correlation® Correlation”
ADNI Dataset
PCA-CCA (Fixed PCs) 0.86 = 0.00 8.47 = 0.16 0.85 = 0.01 14.91 = 0.28 0.70 = 0.00 0.55 = 0.01
PCA-CCA (Data-Driven 0.70 = 0.01 5.26 = 0.25 0.93 = 0.00 15.73 = 0.13 0.83 = 0.01 0.65 = 0.01
PCs)
RCCA (L2-Reg. Opt.) 0.82 = 0.00 5.47 = 0.06 0.94 = 0.00 16.63 + 0.26 0.98 = 0.00 0.66 = 0.01
Standard PLS 0.96 = 0.00 21.54 = 0.16 0.94 + 0.00 18.64 = 0.21 0.44 = 0.00 0.43 = 0.01
SPLS (L1-Reg. Opt.) 0.83 = 0.02 14.05 = 0.13 0.96 = 0.01 15.86 = 0.42 0.60 = 0.00 0.61 = 0.01
HCP Dataset
PCA-CCA (Fixed PCs) 0.72 = 0.01 0.42 = 0.01 0.78 = 0.01 2.67 = 0.10 0.76 = 0.00 0.47 = 0.02
PCA-CCA (Data-Driven 0.56 = 0.02 0.35 = 0.03 0.53 = 0.04 3.73 = 0.39 0.76 = 0.01 0.45 = 0.03
PCs)
RCCA (L2-Reg. Opt.) 0.78 = 0.01 0.29 = 0.01 0.88 = 0.01 4.39 = 0.18 1.00 = 0.00 0.52 = 0.02
Standard PLS-2 0.52 = 0.04 0.50 = 0.05 0.62 = 0.05 8.07 = 0.30 0.79 = 0.02 0.21 = 0.02
SPLS-2 (L1-Reg. Opt.) 0.25 = 0.04 0.48 = 0.07 0.51 = 0.05 7.23 = 0.37 0.64 = 0.04 0.25 = 0.03
Simulated Dataset
PCA-CCA (Fixed PCs) 0.74 = 0.01 0.76 = 0.01 0.90 = 0.00 1.82 = 0.01 0.80 = 0.00 0.67 = 0.01
PCA-CCA (Data-Driven 0.96 = 0.00 0.85 = 0.00 0.91 = 0.00 1.95 = 0.02 0.73 = 0.01 0.70 = 0.01
PCs)
RCCA (L2-Reg. Opt.) 0.93 = 0.00 0.77 = 0.00 0.97 = 0.00 1.99 = 0.01 0.83 = 0.01 0.71 = 0.01
Standard PLS 0.94 = 0.00 0.84 = 0.00 0.97 = 0.00 2.07 = 0.01 0.81 = 0.00 0.71 = 0.01
SPLS (L1-Reg. Opt.) 0.78 = 0.03 0.84 + 0.00 1.00 = 0.00 1.94 = 0.01 0.79 = 0.01 0.73 = 0.01

Values are mean + SEM. Note that we display the second associative effect for standard PLS (PLS-2) and SPLS (SPLS-2) in the HCP dataset, as
it is the most similar to the first associative effects identified by the other models.

ADNI, Alzheimer’s Disease Neuroimaging Initiative; CCA, canonical correlation analysis; HCP, Human Connectome Project; L1-reg., L1-norm
regularization; L2-reg., L2-norm regularization; opt., optimized; PC, principal component; PCA, principal component analysis; PLS, partial least
squares; RCCA, regularized canonical correlation analysis; SPLS, sparse partial least squares;

4Similarity of model weights measured by Pearson’s correlation between each pair of training sets of the outer data splits.

bpercent variance explained by the model relative to all within-modality variance in the training sets of the outer data splits.

“Correlation between the latent variables in the training sets of the outer data splits.

9Correlation between the latent variables in the test sets of the outer data splits.

not necessarily be discarded. Moreover, fixing the same
number of PCs for both modalities might not be a good
choice.

Based on these results, and as the optimal numbers of
PCs can vary even across different brain-behavior associa-
tions in the same dataset, we recommend data-driven PCA-
CCA over PCA-CCA with fixed numbers of PCs. Furthermore,
we found that data-driven PCA-CCA and RCCA gave similar
results, both having a similar regularizing effect on the CCA
model.

Sparse Versus Nonsparse CCA/PLS Models in High-
Dimensional Data
In this section, we show how SPLS found associations be-
tween subsets of features in all 3 high-dimensional datasets,
and we compare the SPLS results with standard PLS and
RCCA.

Figures 4C-E and 5C-E display the models’ weights and
latent variables (note that for the HCP dataset, the brain
weights were transformed into brain connection strength

increases/decreases). The first associative effect found by
standard PLS and SPLS was similar to the first found by RCCA
in both the ADNI and simulated datasets, but in the HCP
dataset, the first associative effect identified by RCCA was
more similar to the second effect found by standard PLS and
SPLS (Figure 6). This is likely because the within-modality
variances in the HCP dataset differ substantially from the
identity matrix, and therefore the difference between the ob-
jectives of CCA and PLS models is more pronounced (see
equations 1 and 2). The brain and behavioral weights were
similar across the 3 models in both real datasets, especially the
top-ranked variables (i.e., the variables with the highest
weights). Similar to RCCA, standard PLS and SPLS recovered
sufficiently the true weights of the generative model; however,
the SPLS model assigned fewer nonzero weights to nonrele-
vant variables (Figure 7C-E). These results demonstrate that
when the signal is sparse, SPLS can lead to high true positive
and high true negative rates of weight recovery (Table S2).
Table S4 shows the sparsity of the associative effects identi-
fied by SPLS.

Biological Psychiatry: Cognitive Neuroscience and Neuroimaging November 2022; 7:1055-1067 www.sobp.org/BPCNNI 1061


http://www.sobp.org/BPCNNI

Psychiatry:
CNNI

High-dimensional ADNI dataset
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The stability of the weights differed significantly between
the brain and behavioral modalities (F1g04 = 75.26, p <
.0001) and the 3 models (Fog04 = 61.77, p < .0001)
(Table 4). The stability of the SPLS weights was lowest in
the HCP dataset, which is likely due to the model’s sparsity
and that different sets of variables might provide similar
performance. The instability of SPLS could be mitigated by
stability selection (20) or a stability criterion during
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Figure 4. Brain weights (left), behavioral weights
(middle), and latent variables (right) for the high-
dimensional Alzheimer's Disease Neuroimaging
Initiative (ADNI) dataset. For visualization purposes,
the model weights are normalized (divided by largest
absolute value). The scatter plot between the brain
and behavioral latent variables is overlaid by a least-
squares regression line separately for the training
and test data. (A) Principal component analysis—
canonical correlation analysis (PCA-CCA) with fixed
number of principal components (PCs). (B) PCA-
CCA with data-driven number of PCs. (C) Regular-
ized CCA (RCCA). (D) Standard partial least squares
(PLS). (E) Sparse PLS (SPLS). corriest, out-of-sample
correlation in the test data; COffyaining, iN-sample
correlation in the training data; L, left hemisphere;
R, right hemisphere.
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hyperparameter optimization (27). The explained variance
varied significantly across modalities (F1474 = 80.00, p <
.0001) and the 3 models (Fz,174 = 28.60, p < .0001).

In summary, while RCCA is likely to yield similar or
higher out-of-sample correlations than standard PLS
and SPLS, SPLS can perform variable selection and may
improve the interpretability of the results; however, it
can also present instabilities. In practice, the 3 models
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Figure 5. Brain connection strengths (left), behavioral weights (text in the middle), and latent variables (right) for the high-dimensional Human Connectome
Project (HCP) dataset. For visualization purposes, the brain weights were transformed into brain connection strength (i.e., brain weights multiplied by the sign
of the population mean connectivity) increases (red) and decreases (blue), summed across the brain nodes (i.e., independent component analysis [ICA]
components in which each brain vertex is assigned to an ICA component it is most likely to belong) and normalized (divided by largest absolute value). Only the
top 15 positive (red) and top 15 negative (blue) behavioral weights are shown (secondary [e.g., age adjusted] measures that are highly redundant with those
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variables.

Standard Versus Regularized Extension of CCA/PLS
Models in Low-Dimensional Data

To investigate the effects of regularization in all 3 low-
dimensional datasets, we compared standard CCA, RCCA,
standard PLS, and SPLS. The regularized models (RCCA,
SPLS) were more stable (F3 1075 = 80.54, p < .0001) (Table S5)
and showed a trend toward higher out-of-sample correlations
(F1,10 = 3.35, p = .0972) (Figure S1) than their nonregularized
variants (standard CCA and PLS). The stability of standard PLS
and RCCA weights was consistently high, the stability of SPLS
varied across datasets, and standard CCA was rather unstable
(Table S5). SPLS provided sparse results, similar to the high-
dimensional datasets (Table S4). As expected, RCCA and
standard PLS explained increasingly more within-modality
variance than standard CCA. For a detailed description of

Behavioral weights

Standard
PLS

Behavioral weights

Standard
PLS-1
Standard
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Figure 6. Comparison of brain weights (left) and

behavioral weights (right) across canonical correla-

tion analysis/partial least squares (CCA/PLS) models

for the high-dimensional Alzheimer’s Disease Neu-

roimaging Initiative (ADNI) and Human Connectome

Project (HCP) datasets obtained by the predictive

framework. The similarity between the model

weights was measured by Spearman’s correlation.

The similarity between sparse PLS (SPLS) and the

other models was measured only for the subset of

variables identified by SPLS (the similarity between

0 the 2 SPLS models was measured for the subset of

variables that were present in both models). (A)

High-dimensional ADNI dataset. (B) High-

dimensional HCP dataset. Note that the second

associative effect identified by standard PLS (PLS-2)

and SPLS (SPLS-2) was similar to the first associa-

tive effects identified by the other models. PC,

principal component; PCA, principal component

1 analysis; RCCA, regularized canonical correlation
analysis.

SPLS

PLS-2
SPLS-1
SPLS-2

these results, see the Supplement. Taken together, these re-
sults suggest that RCCA/SPLS models should be preferred
even for low-dimensional data.

Conclusions

This tutorial compared standard and regularized extensions of
CCA and PLS models and highlighted the benefits of regula-
rization. Here, we outline the key lessons.

First, we showed that regularized extensions of CCA/PLS
models give similar out-of-sample correlations in large data-
sets (with the exception of standard PLS and SPLS in the high-
dimensional HCP dataset) when the sample size is similar to or
much smaller than the number of variables (i.e., when the ratio
between examples and variables is ~1-10 or ~0.1-0.01).
Importantly, RCCA and SPLS outperformed standard CCA
and PLS even when the ratio between examples and variables
was ~1 to 10. Second, we emphasized that it is important to
use a predictive framework, as high in-sample correlations do
not necessarily imply generalizability to unseen data.

shown here are not displayed). The behavioral model weights are normalized (divided by largest absolute value). The scatter plot between the brain and
behavioral latent variables is overlaid by a least-squares regression line separately for the training and test data. (A) Principal component analysis—canonical
correlation analysis (PCA-CCA) with fixed number of principal components (PCs). (B) PCA-CCA with data-driven number of PCs. (C) Regularized CCA
(RCCA). (D) Standard partial least squares (PLS). (E) Sparse PLS (SPLS). ASR, Achenbach Adult Self Report; AUC, area under curve; COrriegt, Out-of-sample
correlation in the test data; corryining, in-sample correlation in the training data; CPT, continuous performance test; L, left hemisphere; R, right hemisphere;

THC, Ag-tetrahydrocannabinol.
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Figure 7. Model weights (left: high-dimensional
modality; middle: low-dimensional modality) and
latent variables (right) for the high-dimensional
simulated dataset. For comparison, the true
weights (red) of the generative model are overlaid on
the model weights (blue). For visualization purposes,
the model weights are normalized (divided by largest
value), and only a subset of 100 random weights (out
of the total 20,000) is displayed for the high-
dimensional modality. The scatter plot between the
brain and behavioral latent variables is overlaid by a
least-squares regression line separately for the
training and test data. (A) Principal component
analysis—canonical correlation analysis (PCA-CCA)
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Going beyond model performance, we demonstrated both
in theory and in practice that standard CCA is prone to insta-
bility (Table S3). L2-norm regularization improves stability,
which comes at a cost of the models (RCCA, standard PLS,
SPLS) being driven by within-modality variances. PCA-CCA
with data-driven selection of PCs improves on a priori selec-
tion. Data-driven PCA-CCA has a comparable regularizing ef-
fect to RCCA. Sparsity (i.e., L1-norm regularization) can
facilitate the interpretability and the generalizability of the

models, but it can also introduce instability. Sparsity is most
useful when the associative effect itself is sparse (e.g., in the
ADNI and simulated datasets). Data-driven PCA-CCA, RCCA,
and SPLS yielded similar model weights and accounted for
similar variances.

We hope that this work, together with recent efforts [e.g.,
(26,27,30,31,52)] and critical exchanges [e.g., (28,58-61)], illu-
minates these complex methods and facilitates their applica-
tion to the brain and its disorders.
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